高级搜索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

时空约束下优选近邻指纹定位算法

王逸帆 孙顺远 秦宁宁

王逸帆, 孙顺远, 秦宁宁. 时空约束下优选近邻指纹定位算法[J]. 电子与信息学报. doi: 10.11999/JEIT250777
引用本文: 王逸帆, 孙顺远, 秦宁宁. 时空约束下优选近邻指纹定位算法[J]. 电子与信息学报. doi: 10.11999/JEIT250777
WANG Yifan, SUN Shunyuan, QIN Ningning. Spatio-Temporal Constrained Refined Nearest Neighbor Fingerprinting Localization[J]. Journal of Electronics & Information Technology. doi: 10.11999/JEIT250777
Citation: WANG Yifan, SUN Shunyuan, QIN Ningning. Spatio-Temporal Constrained Refined Nearest Neighbor Fingerprinting Localization[J]. Journal of Electronics & Information Technology. doi: 10.11999/JEIT250777

时空约束下优选近邻指纹定位算法

doi: 10.11999/JEIT250777 cstr: 32379.14.JEIT250777
基金项目: 国家自然科学基金项目(61773182),江苏高校优势学科建设工程资助项目(PADP)
详细信息
    作者简介:

    王逸帆:男,硕士研究生,研究方向为室内定位

    孙顺远:男,副教授,研究方向为仪表设计与仪表检检测与室内定位

    秦宁宁:女,教授,研究方向为智能网络组建和信道数据的网络化应用

    通讯作者:

    孙顺远 54robin@163.com

  • 中图分类号: TP212

Spatio-Temporal Constrained Refined Nearest Neighbor Fingerprinting Localization

Funds: The National Natural Science Foundation of China (61773182),A Project Funded by the Priority Academic Program Development of Jiangsu Higher Education Institutions (PAPD)
  • 摘要: 针对室内指纹定位中降维技术导致的信号与物理空间的几何关联弱化、信号时变引起的在线映射偏差、以及定位过程中伪近邻点干扰等问题,提出时空约束下优选近邻指纹定位算法。在离线降维建库阶段,引入空间关联约束,依据参考点间的物理距离调节低维特征空间结构,加强低维特征与物理坐标的耦合关系;同时设计时变一致约束,促使同一位置不同时刻的指纹在映射后的低维空间中保持聚集,以提升高维信号到低维特征的映射稳定性。在在线定位阶段,融合共享近邻相似度和欧式距离生成邻距相似度,据此构建近邻集,进而采用基于Z-score阈值的迭代优化策略,分析内部相似度分布并剔除伪近邻点,保障近邻质量和定位精度。实验结果表明,所提算法在实测数据集上平均定位误差较基准方法降低至少12.42%,在公开数据集上降低至少7.08%,且在相同误差范围内的累计概率更高。
  • 图  1  指纹定位流程图

    图  2  STC-RNL算法流程图

    图  3  实验数据集空间分布示意图

    图  4  差异系数$ \rho $与空间关联权重$ \alpha $对性能的影响

    图  5  时变一致权重β对性能的影响

    图  6  优选近邻参数U和$ {\theta }_{d} $对性能的影响

    图  7  消融实验结果对比

    图  8  降维算法基础性能比较

    图  9  不同定位算法累积概率分布比较

    图  10  整体算法累积分布误差比较

    表  1  不同定位算法性能比较

    定位算法平均定位误差(m)最小值(m)最大值(m)
    SSA-XGBoost1.3400.0494.750
    PSO-ELM1.4460.0826.182
    SPSO1.1020.0505.064
    RDC-WKNN1.0610.0977.039
    所提算法0.9590.0473.121
    下载: 导出CSV

    表  2  整体算法性能对比

    数据集定位算法平均定位误差(m)最小值(m)最大值(m)标准差(m)
    ITECPCA-KRR1.4270.0535.8611.075
    KPCA-IGBRT1.1290.0283.4780.904
    SANGIRA1.0950.0105.2880.966
    所提算法0.9590.0473.1210.727
    SYLPCA-KRR4.2590.65245.6364.477
    KPCA-IGBRT4.0020.11848.1634.943
    SANGIRA3.9570.21150.9274.963
    所提算法3.6770.05840.9504.570
    下载: 导出CSV
  • [1] FARAHSARI P S, FARAHZADI A, REZAZADEH J, et al. A survey on indoor positioning systems for IoT-based applications[J]. IEEE Internet of Things Journal, 2022, 9(10): 7680–7699. doi: 10.1109/JIOT.2022.3149048.
    [2] YANG Yang, CHEN Mingzhe, BLANKENSHIP Y, et al. Positioning using wireless networks: Applications, recent progress, and future challenges[J]. IEEE Journal on Selected Areas in Communications, 2024, 42(9): 2149–2178. doi: 10.1109/JSAC.2024.3423629.
    [3] WANG He, WANG Qitong, HUANG Leilei, et al. A PCA acceleration algorithm for WiFi sensing and its hardware implementation[C]. 2024 IEEE International Symposium on Circuits and Systems, Singapore, Singapore, 2024: 1–5. doi: 10.1109/ISCAS58744.2024.10557859.
    [4] SONG Qianwen, GUO Songtao, LIU Xing, et al. CSI amplitude fingerprinting-based NB-IoT indoor localization[J]. IEEE Internet of Things Journal, 2018, 5(3): 1494–1504. doi: 10.1109/JIOT.2017.2782479.
    [5] YAO Bin, LI Wen, WEI Dongyan, et al. Topology construction based on indoor crowdsourcing data using manifold learning: Evaluation of algorithms and key parameters[C]. 2021 International Conference on Indoor Positioning and Indoor Navigation, loret de Mar, Spain, 2021: 1–8. doi: 10.1109/IPIN51156.2021.9662627.
    [6] AYINLA S L, AZIZ A A, and DRIEBERG M. SALLoc: An accurate target localization in WiFi-enabled indoor environments via SAE-ALSTM[J]. IEEE Access, 2024, 12: 19694–19710. doi: 10.1109/ACCESS.2024.3360228.
    [7] YANG Haifeng, ZHANG Yongbo, HUANG Yuliang, et al. WKNN indoor location algorithm based on zone partition by spatial features and restriction of former location[J]. Pervasive and Mobile Computing, 2019, 60: 101085. doi: 10.1016/j.pmcj.2019.101085.
    [8] SHEN Qiang and CUI Yinghua. WiFi fingerprint correction for indoor localization based on distance metric learning[J]. IEEE Sensors Journal, 2024, 24(21): 36167–36177. doi: 10.1109/JSEN.2024.3462759.
    [9] WANG Guanzhong, ZHANG Dongheng, ZHANG Tianyu, et al. Learning domain-invariant model for WiFi-based indoor localization[J]. IEEE Transactions on Mobile Computing, 2024, 23(12): 13898–13913. doi: 10.1109/TMC.2024.3438454.
    [10] ZHENG Jin, LI Kailong, and ZHANG Xing. Wi-Fi fingerprint-based indoor localization method via standard particle swarm optimization[J]. Sensors, 2022, 22(13): 5051. doi: 10.3390/s22135051.
    [11] 刘志平, 李桂南, 余航, 等. 正则化距离准则的Wi-Fi位置指纹室内定位方法[J]. 测绘科学, 2017, 42(12): 185–189,194. doi: 10.16251/j.cnki.1009-2307.2017.12.031.

    LIU Zhiping, LI Guinan, YU Hang, et al. A regularized-distance rule method for Wi-Fi fingerprinting indoor positioning[J]. Science of Surveying and Mapping, 2017, 42(12): 185–189,194. doi: 10.16251/j.cnki.1009-2307.2017.12.031.
    [12] WALTER M J, WALKER D J, and CRAVEN M J. Visualizing population dynamics to examine algorithm performance[J]. IEEE Transactions on Evolutionary Computation, 2022, 26(6): 1501–1510. doi: 10.1109/TEVC.2022.3157143.
    [13] SUN Liping, BAO Shuting, CI Shang, et al. Differential privacy-preserving density peaks clustering based on shared near neighbors similarity[J]. IEEE Access, 2019, 7: 89427–89440. doi: 10.1109/ACCESS.2019.2927308.
    [14] BI Jingxue, WANG Yunjia, YU Baoguo, et al. Supplementary open dataset for WiFi indoor localization based on received signal strength[J]. Satellite Navigation, 2022, 3(1): 25. doi: 10.1186/s43020-022-00086-y.
    [15] 冷腾飞, 苏圣超. 基于子区域切分与SSA-XGBoost的室内定位方法[J]. 传感技术学报, 2024, 37(5): 833–840. doi: 10.3969/j.issn.1004-1699.2024.05.013.

    LENG Tengfei and SU Shengchao. Indoor localization method based on subspace segmentation and SSA-XGBoost[J]. Chinese Journal of Sensors and Actuators, 2024, 37(5): 833–840. doi: 10.3969/j.issn.1004-1699.2024.05.013.
    [16] QIU Wanqing, ZHANG Qingmiao, ZHAO Junhui, et al. Improved PSO-extreme learning machine algorithm for indoor localization[J]. China Communications, 2024, 21(5): 113–122. doi: 10.23919/JCC.fa.2022-0011.202405.
    [17] 张贺娜, 乐燕芬, 施伟斌. 基于特征降维的核岭回归室内定位算法[J]. 仪器仪表学报, 2020, 41(10): 83–91. doi: 10.19650/j.cnki.cjsi.J2006576.

    ZHANG Hena, LE Yanfen, and SHI Weibin. Kernel ridge regression based indoor location algorithm using feature reduction[J]. Chinese Journal of Scientific Instrument, 2020, 41(10): 83–91. doi: 10.19650/j.cnki.cjsi.J2006576.
    [18] 李新春, 房梽斅, 张春华. 基于KPCA和改进GBRT的室内定位算法[J]. 传感技术学报, 2019, 32(3): 430–437. doi: 10.3969/j.issn.1004-1699.2019.03.019.

    LI Xinchun, FANG Zhixiao, and ZHANG Chunhua. Indoor positioning algorithm based on KPCA and improved GBRT[J]. Chinese Journal of Sensors and Actuators, 2019, 32(3): 430–437. doi: 10.3969/j.issn.1004-1699.2019.03.019.
    [19] GUFRAN D, TIKU S, and PASRICHA S. SANGRIA: Stacked autoencoder neural networks with gradient boosting for indoor localization[J]. IEEE Embedded Systems Letters, 2024, 16(2): 142–145. doi: 10.1109/LES.2023.3279017.
  • 加载中
图(10) / 表(2)
计量
  • 文章访问数:  15
  • HTML全文浏览量:  9
  • PDF下载量:  1
  • 被引次数: 0
出版历程
  • 修回日期:  2026-01-12
  • 录用日期:  2026-01-12
  • 网络出版日期:  2026-01-27

目录

    /

    返回文章
    返回