高级搜索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

一类线性码及其子域码

柴烨 朱士信 开晓山

柴烨, 朱士信, 开晓山. 一类线性码及其子域码[J]. 电子与信息学报. doi: 10.11999/JEIT250775
引用本文: 柴烨, 朱士信, 开晓山. 一类线性码及其子域码[J]. 电子与信息学报. doi: 10.11999/JEIT250775
CHAI Ye, ZHU Shixin, KAI Xiaoshan. A Family of Linear Codes and Their Subfield Codes[J]. Journal of Electronics & Information Technology. doi: 10.11999/JEIT250775
Citation: CHAI Ye, ZHU Shixin, KAI Xiaoshan. A Family of Linear Codes and Their Subfield Codes[J]. Journal of Electronics & Information Technology. doi: 10.11999/JEIT250775

一类线性码及其子域码

doi: 10.11999/JEIT250775 cstr: 32379.14.JEIT250775
基金项目: 国家自然科学基金(12171134, U21A20428)
详细信息
    作者简介:

    柴烨:柴 烨:女,硕士生,研究方向为代数编码

    朱士信:男,教授,博士生导师,研究方向为代数编码理论、信息安全与序列密码等

    开晓山:男,教授,博士生导师,研究方向为代数编码

    通讯作者:

    朱士信 zhushixinmath@hfut.edu.cn

  • 中图分类号: TN911.22

A Family of Linear Codes and Their Subfield Codes

  • 摘要: 少重量线性码在秘密共享、强正则图、关联方案和认证码等方面有着广泛的应用。基于有限域上Kloosterman和,完全确定了一类$ q $元少重量线性码及其删余码的参数和重量分布,研究了它们的对偶码及其子域码,得到了关于球包界最优的线性码。
  • 表  1  $ {\mathcal{C}}_{\mathcal{D}} $的重量分布

    重量 频数
    $ 0 $ $ 1 $
    $ {2}^{2m-1} $ $ {2}^{m}-1 $
    $ {2}^{m-1}({2}^{m}-1)+1 $ $ {2}^{m}({2}^{m}-1) $
    $ {2}^{m-1}({2}^{m}-1)-{1}/{2}(r-1)S-{1}/{2} $ $ {2}^{m-1}({2}^{m}-1) $
    $ {2}^{m-1}({2}^{m}-1)+{1}/{2}(r-1)S+{1}/{2} $ $ ({2}^{m}-1)({2}^{m}-{2}^{m-1}) $
    $ {2}^{m-1}({2}^{m}-1)-{1}/{2}(r-S-1) $ $ {2}^{m-2}({2}^{m}-1)(r-1)(r+1+S) $
    $ {2}^{m-1}({2}^{m}-1)+{1}/{2}(1+r+S) $ $ {2}^{m-2}({2}^{m}-1)(r-1)(r+1-S) $
    $ {2}^{m-1}({2}^{m}-1)-{1}/{2}(S-r-3) $ $ \begin{aligned} & ({2}^{m}-1)({2}^{m-1}-{2}^{m-2})\\& (r-1)(r+1+S)\end{aligned} $
    $ {2}^{m-1}({2}^{m}-1)-{1}/{2}(S+r-3) $ $ \begin{aligned} & ({2}^{m}-1)({2}^{m-1}-{2}^{m-2})\\& (r-1)(r+1-S)\end{aligned} $
    下载: 导出CSV

    表  2  $ \mathcal{C}_{\mathcal{D}}^{*} $的重量分布

    重量 频数
    $ 0 $ $ 1 $
    $ {2}^{2m-1} $ $ {2}^{m}-1 $
    $ {2}^{m-1}({2}^{m}-1) $ $ {2}^{m}({2}^{m}-1) $
    $ {2}^{m-1}({2}^{m}-1)-{1}/{2}(r-1)S-{1}/{2} $ $ {2}^{m-1}({2}^{m}-1) $
    $ {2}^{m-1}({2}^{m}-1)+{1}/{2}(r-1)S+{1}/{2} $ $ ({2}^{m}-1)({2}^{m}-{2}^{m-1}) $
    $ {2}^{m-1}({2}^{m}-1)-{1}/{2}(1+r-S) $ $ {2}^{m-2}({2}^{m}-1)(r-1)(r+1+S) $
    $ {2}^{m-1}({2}^{m}-1)-{1}/{2}(1-r-S) $ $ {2}^{m-2}({2}^{m}-1)(r-1)(r+1-S) $
    $ {2}^{m-1}({2}^{m}-1)-{1}/{2}(S-r-1) $ $ ({2}^{m}-1)({2}^{m-1}-{2}^{m-2})(r-1)(r+1+S)$
    $ {2}^{m-1}({2}^{m}-1)-{1}/{2}(S+r-1) $ $({2}^{m}-1)({2}^{m-1}-{2}^{m-2}) (r-1)(r+1-S)$
    下载: 导出CSV

    表  3  $ \mathcal{C}_{\mathcal{D}}^{(2)} $的重量分布

    重量 频数
    $ 0 $ $ 1 $
    $ {2}^{2m-1} $ $ 1 $
    $ {2}^{2m-2} $ $ ({2}^{m}-2)({2}^{m}+1) $
    $ {2}^{2m-2}+1 $ $ {2}^{m}({2}^{m}-1) $
    $ {2}^{2m-2}-{2}^{m-2}-{2}^{m-2}(r-1)S $ $ 1 $
    $ {2}^{2m-2}+{2}^{m-2}+{2}^{m-2}(r-1)S $ $ 1 $
    $ {2}^{2m-2}-{2}^{m-2}(1+r-S) $ $ {(r-1)(r+1+S)}/{4}+{1}/{2} $
    $ {2}^{2m-2}-{2}^{m-2}(1+r-S)+1 $ $ {(r-1)(r+1+S)}/{4}-{1}/{2} $
    $ {2}^{2m-2}-{2}^{m-2}(1-r-S) $ $ {(r-1)(r+1-S)}/{4}-1 $
    $ {2}^{2m-2}-{2}^{m-2}(1-r-S)+1 $ $ {(r-1)(r+1-S)}/{4}+1 $
    $ {2}^{2m-2}+{2}^{m-2}(1+r-S) $ $ {(r-1)(r+1+S)}/{4}+{1}/{2} $
    $ {2}^{2m-2}+{2}^{m-2}(1+r-S)+1 $ $ {(r-1)(r+1+S)}/{4}-{1}/{2} $
    $ {2}^{2m-2}+{2}^{m-2}(1-r-S) $ $ {(r-1)(r+1-S)}/{4}-1 $
    $ {2}^{2m-2}+{2}^{m-2}(1-r-S)+1 $ $ {(r-1)(r+1-S)}/{4}+1 $
    下载: 导出CSV

    表  4  $ \mathcal{C}_{\mathcal{D}}^{*(2)} $的重量分布

    重量 频数
    $ 0 $ $ 1 $
    $ {2}^{2m-1} $ $ 1 $
    $ {2}^{2m-2} $ $ {2}^{m+1}({2}^{m}-1)-2 $
    $ {2}^{2m-2}-{2}^{m-2}-{2}^{m-2}(r-1)S $ $ 1 $
    $ {2}^{2m-2}+{2}^{m-2}+{2}^{m-2}(r-1)S $ $ 1 $
    $ {2}^{2m-2}-{2}^{m-2}(1+r-S) $ $ {(r-1)(r+1+S)}/{2} $
    $ {2}^{2m-2}-{2}^{m-2}(1-r-S) $ $ {(r-1)(r+1-S)}/{2} $
    $ {2}^{2m-2}+{2}^{m-2}(1+r-S) $ $ frac{(r-1)(r+1+S)}/{2} $
    $ {2}^{2m-2}+{2}^{m-2}(1-r-S) $ $ {(r-1)(r+1-S)}/{2} $
    下载: 导出CSV
  • [1] DE BOER M A. Almost MDS codes[J]. Designs, Codes and Cryptography, 1996, 9(2): 143–155. doi: 10.1023/A:1018014013461.
    [2] KLØVE T. Codes for Error Detection[M]. Hackensack: World Scientific, 2007: 216.
    [3] ANDERSON R, DING Cunsheng, HELLESETH T, et al. How to build robust shared control systems[J]. Designs, Codes and Cryptography, 1998, 15(2): 111–124. doi: 10.1023/A:1026421315292.
    [4] CARLET C, DING Cunsheng, and YUAN Jin. Linear codes from perfect nonlinear mappings and their secret sharing schemes[J]. IEEE Transactions on Information Theory, 2005, 51(6): 2089–2102. doi: 10.1109/TIT.2005.847722.
    [5] CALDERBANK R and KANTOR W M. The geometry of two-weight codes[J]. Bulletin of the London Mathematical Society, 1986, 18(2): 97–122. doi: 10.1112/blms/18.2.97.
    [6] CALDERBANK A R and GOETHALS J M. Three-weight codes and association schemes[J]. Philips Journal of Research, 1984, 39(4/5): 143–152.
    [7] DING Cunsheng and WANG Xuesong. A coding theory construction of new systematic authentication codes[J]. Theoretical Computer Science, 2005, 330(1): 81–99. doi: 10.1016/j.tcs.2004.09.011.
    [8] DING Cunsheng and HENG Ziling. The subfield codes of ovoid codes[J]. IEEE Transactions on Information Theory, 2019, 65(8): 4715–4729. doi: 10.1109/TIT.2019.2907276.
    [9] HENG Ziling and DING Cunsheng. The subfield codes of hyperoval and conic codes[J]. Finite Fields and Their Applications, 2019, 56: 308–331. doi: 10.1016/j.ffa.2018.12.006.
    [10] HENG Ziling, DING Cunsheng, and WANG Weiqiong. Optimal binary linear codes from maximal arcs[J]. IEEE Transactions on Information Theory, 2020, 66(9): 5387–5394. doi: 10.1109/TIT.2020.2970405.
    [11] WANG Xiaoqiang and ZHENG Dabin. The subfield codes of several classes of linear codes[J]. Cryptography and Communications, 2020, 12(6): 1111–1131. doi: 10.1007/s12095-020-00432-4.
    [12] WANG Xiaoqiang, ZHENG Dabin, and ZHANG Yan. A class of subfield codes of linear codes and their duals[J]. Cryptography and Communications, 2021, 13(1): 173–196. doi: 10.1007/s12095-020-00460-0.
    [13] CHENG Kaimin and GAO Shuhong. On binomial Weil sums and an application[J]. Cryptography and Communications, 2025, 17(4): 1173–1190. doi: 10.1007/s12095-025-00810-w.
    [14] WU Yansheng. Optimal few-weight codes and their subfield codes[J]. Journal of Algebra and its Applications, 2024, 23(14): 2450248. doi: 10.1142/S0219498824502487.
    [15] XIE Dengcheng and ZHU Shixin. Several families of subfield codes from special functions and elliptic quadric[J]. Journal of Algebra and its Applications, 2025. doi: 10.1142/S0219498826502804. (查阅网上资料,未找到卷期页码信息,请确认).
    [16] XU Li, FAN Cuiling, MESNAGER S, et al. Subfield codes of several few-weight linear codes parameterized by functions and their consequences[J]. IEEE Transactions on Information Theory, 2024, 70(6): 3941–3964. doi: 10.1109/TIT.2023.3328932.
    [17] QIAO Xingbin, DU Xiaoni, and YUAN Wenping. Several classes of linear codes with AMDS duals and their subfield codes[J]. Cryptography and Communications, 2024, 16(6): 1429–1448. doi: 10.1007/s12095-024-00729-8.
    [18] DING Yun and ZHU Shixin. A family of linear codes with few weights and their subfield codes[J]. Cryptography and Communications, 2025, 17(1): 207–238. doi: 10.1007/s12095-024-00753-8.
    [19] TAN Pan, ZHOU Zhengchun, TANG Deng, et al. The weight distribution of a class of two-weight linear codes derived from Kloosterman sums[J]. Cryptography and Communications, 2018, 10(2): 291–299. doi: 10.1007/s12095-017-0221-1.
    [20] BALL S. Finite Geometry and Combinatorial Applications[M]. Cambridge: Cambridge University Press, 2015: 285. doi: 10.1017/CBO9781316257449.
    [21] HUFFMAN W C and PLESS V. Fundamentals of Error-Correcting Codes[M]. Cambridge: Cambridge University Press, 2003: 664.
  • 加载中
表(4)
计量
  • 文章访问数:  25
  • HTML全文浏览量:  11
  • PDF下载量:  4
  • 被引次数: 0
出版历程
  • 收稿日期:  2025-08-19
  • 修回日期:  2025-11-25
  • 录用日期:  2025-12-22
  • 网络出版日期:  2025-12-29

目录

    /

    返回文章
    返回