高级搜索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

考虑工作量不确定性的软件项目策略梯度超启发式调度

申晓宁 施江熠 马燕昭 陈文言 佘娟

申晓宁, 施江熠, 马燕昭, 陈文言, 佘娟. 考虑工作量不确定性的软件项目策略梯度超启发式调度[J]. 电子与信息学报. doi: 10.11999/JEIT250769
引用本文: 申晓宁, 施江熠, 马燕昭, 陈文言, 佘娟. 考虑工作量不确定性的软件项目策略梯度超启发式调度[J]. 电子与信息学报. doi: 10.11999/JEIT250769
SHEN Xiaoning, SHI Jiangyi, MA Yanzhao, CHEN Wenyan, SHE Juan. Considering Workload Uncertainty in Strategy Gradient-Based Hyper-Heuristic Scheduling for Software Projects[J]. Journal of Electronics & Information Technology. doi: 10.11999/JEIT250769
Citation: SHEN Xiaoning, SHI Jiangyi, MA Yanzhao, CHEN Wenyan, SHE Juan. Considering Workload Uncertainty in Strategy Gradient-Based Hyper-Heuristic Scheduling for Software Projects[J]. Journal of Electronics & Information Technology. doi: 10.11999/JEIT250769

考虑工作量不确定性的软件项目策略梯度超启发式调度

doi: 10.11999/JEIT250769 cstr: 32379.14.JEIT250769
基金项目: 国家自然科学基金 (61502239),江苏省自然科学基金 (BK20150924)
详细信息
    作者简介:

    申晓宁:女,教授,研究方向为强化学习,多目标优化,演化计算及其应用

    施江熠:男,硕士生,研究方向为智能计算、深度强化学习、调度技术

    马燕昭:男,硕士生,研究方向为智能计算、深度强化学习、调度技术

    陈文言:女,硕士,研究方向为软件项目调度

    佘娟:女,硕士生,研究方向为群智能优化算法及其应用

    通讯作者:

    马燕昭 1812173892@qq.com

  • 中图分类号: TP311.52

Considering Workload Uncertainty in Strategy Gradient-Based Hyper-Heuristic Scheduling for Software Projects

Funds: Supported by the National Natural Science Foundation of China (61502239), Supported by the Natural Science Foundation of Jiangsu Province, China (No.BK20150924)
  • 摘要: 围绕软件项目开发过程中存在的不确定因素,建立一种考虑任务工作量不确定性的多目标软件项目调度模型。该模型采用非对称三角区间二型模糊数描述工作量的不确定性。为了提高不确定环境下的决策质量,提出一种基于策略梯度的超启发式算法求解该模型。该算法将强化学习中的一种策略梯度算法(即Actor-Critic算法)作为高层策略,根据算法的当前运行状态选择合适的低层启发式策略。同时引入优先经验回放法,以利用历史经验信息更新网络参数,加快收敛速度并降低学习成本。将所提算法与6种代表性算法在12个人工合成算例和3个实例上进行了对比。实验结果表明,所提算法在不确定调度环境中能够搜索到一组收敛性和多样性更好的非支配解。
  • 图  1  非对称三角区间二型模糊数

    图  2  PGHHA算法流程图

    图  3  各参数在四种不同水平下的S/N平均值

    图  4  不同算法在实例Real-1上的Pareto前沿对比图

    图  5  不同算法在算例20M-40N-10S上的Pareto前沿对比图

    图  6  所提算法PGHHA和6种对比算法在所有算例上的运行时间

    表  1  员工和任务属性

    符号 定义
    $ {E_i} $ i个员工,i=1,2,···,MM为员工总数
    $ E_i^{{\text{maxded}}} $ $ {E_i} $对项目的最大投入度
    $ v_i^k $ 员工$ {E_i} $在技能k上的等级,技能等级分为5级,$ v_i^k \in \left\{ {1,2,3,4,5} \right\} $
    $ {o_i} $ $ {E_i} $已掌握的技能集合
    $ p_i^k $ $ {E_i} $对技能k的熟练度,$ p_i^k \in [0,C] $,C=5
    $ {\text{c}}{{\text{o}}_{il}} $ 员工$ {E_i} $和员工$ {E_l} $的合作次数
    $ {T_j} $ j个任务,j=1,2,…,NN为任务总数
    $ \tilde T_j^{{\text{eff}}} $ $ {T_j} $所需要的模糊工作量,单位是人·月
    $ {\text{T\_li}}{{\text{m}}_j} $ $ {T_j} $的最大参与人数
    $ T_j^{{\text{ext}}} $ 任务$ {T_j} $的重要程度,$ T_j^{{\text{ext}}} \in \left\{ {1,2,3,4,5} \right\} $
    $ {T^{{\text{im}}}} $ 重要任务的集合,由重要程度为5级的任务构成,即$ {T^{{\text{im}}}} = \left\{ {{T_j}|T_j^{{\text{ext}}} = 5,j = 1,2,\cdots,N} \right\} $
    $ {\text{re}}{{\text{q}}_j} $ $ {T_j} $所需要的技能集合
    $ {H^k} $ 在技能k上骨干员工的集合,由技能等级为4级或5级的员工构成,即$ {H}^{k}=\left\{{E}_{i}|{v}_{i}^{k}=4\text{ },或{\text{ v}}_{i}^{k}=5,i=1,2,\cdots ,M\right\} $
    下载: 导出CSV

    表  2  4种种群状态的划分

    $ {S_1} $$ {S_2} $$ {S_3} $$ {S_4} $
    $ \Delta {\text{HV}} > 0 $$ \Delta {\text{HV}} < 0 $$ \Delta {\text{HV}} > 0 $$ \Delta {\text{HV}} \leqslant 0 $
    $ \Delta {\text{DV}} > 0 $$ \Delta {\text{DV}} > 0 $$ \Delta {\text{DV}} < 0 $$ \Delta {\text{DV}} \leqslant 0 $
    下载: 导出CSV

    表  3  8种低层启发式策略

    LLH1LLH2LLH3LLH4
    MCO+SLSS+V1MCO+SLSS+V2MCO+DLSS+V1MCO+DLSS+V2
    LLH5LLH6LLH7LLH8
    JORJ+SLSS+V1JORJ+SLSS+V2JORJ+DLSS+V1JORJ+DLSS+V2
    下载: 导出CSV

    表  4  20M-40N-10S算例上不同参数的取值结果对比

    组别 参数 结果
    V L l $ \lambda $ S/N
    1 5 250 32 0.2 2.3655
    2 5 500 64 0.4 1.7542
    3 5 750 128 0.6 3.6635
    4 5 1000 256 0.8 2.4745
    5 10 250 64 0.6 2.6962
    6 10 500 32 0.8 2.3946
    7 10 750 256 0.2 2.7389
    8 10 1000 128 0.4 3.1599
    9 15 250 128 0.8 3.1577
    10 15 500 256 0.6 2.6271
    11 15 750 32 0.4 2.9583
    12 15 1000 64 0.2 2.1076
    13 20 250 256 0.4 3.1444
    14 20 500 128 0.2 2.7643
    15 20 750 64 0.8 1.6519
    16 20 1000 32 0.6 2.4745
    下载: 导出CSV

    表  5  所提算法PGHHA和替换单一策略算法的对比结果

    算例PGHHAPGHHA1PGHHA2PGHHA3
    HVRIGDHVRIGDHVRIGDHVRIGD
    10M-10N-5S0.992500.092200.98400=0.12346+0.96899+0.21161+0.97471+0.14761+
    10M-15N-5S0.958440.058340.89655+0.20335+0.93145+0.17469+0.81489+0.29439+
    10M-15N-10S0.947900.119680.87704+0.26172+0.92149+0.18779+0.80562+0.29297+
    15M-20N-5S0.981630.082620.79431+0.38438+0.90486+0.15519+0.77907+0.38811+
    15M-20N-10S0.979270.116050.74462+0.29048+0.77350+0.23512+0.76558+0.27590+
    15M-30N-5S0.965630.091720.74232+0.23335+0.79543+0.24815+0.69608+0.31365+
    15M-30N-10S0.973750.083770.41407+0.45349+0.86138+0.17924+0.78636+0.29754+
    20M-30N-5S0.994490.040140.76834+0.23783+0.79635+0.18083+0.76224+0.26607+
    20M-30N-10S0.973150.174560.49679+0.46848+0.57295+0.37948+0.76702+0.24577+
    20M-40N-10S0.874400.078480.71880+0.15870+0.63450+0.12640+0.70570+0.12980+
    25M-40N-10S0.953820.094080.89277+0.15278+0.84310+0.13515+0.87307+0.19490+
    30M-40N-10S0.949100.109110.89051+0.18086+0.86931+0.17546+0.89889+0.18816+
    Real-10.984260.100890.78669+0.31839+0.79828+0.30680+0.76297+0.35578+
    Real-20.965640.051320.84702+0.12234+0.86167+0.09253+0.83655+0.17651+
    Real-30.970030.224310.94249+0.37577+0.96009=0.32971+0.92067+0.29233+
    +/-/=14/0/115/0/014/0/115/0/015/0/015/0/0
    下载: 导出CSV

    表  6  所提算法的性能验证实验中六种算法的对比结果

    算例 PGHHA DBMA ACCCTS HHQL
    HVR IGD HVR IGD HVR IGD HVR IGD
    10M-10N-5S 0.99258 0.09220 0.97294+ 0.15199+ 0.98768= 0.10607+ 0.98235+ 0.12064+
    10M-15N-5S 0.95844 0.05834 0.82412+ 0.22569+ 0.88027+ 0.16973+ 0.84688+ 0.20773+
    10M-15N-10S 0.94790 0.11968 0.84145+ 0.26447+ 0.89963+ 0.20285+ 0.87447+ 0.25913+
    15M-20N-5S 0.98163 0.08262 0.79265+ 0.36254+ 0.80773+ 0.23642+ 0.79295+ 0.33822+
    15M-20N-10S 0.97927 0.11605 0.74482+ 0.31588+ 0.77390+ 0.23932+ 0.75041+ 0.24309+
    15M-30N-5S 0.96563 0.09172 0.72179+ 0.30118+ 0.76937+ 0.13433+ 0.71657+ 0.25633+
    15M-30N-10S 0.97375 0.08377 0.82710+ 0.26013+ 0.86548+ 0.20556+ 0.82900+ 0.23633+
    20M-30N-5S 0.99449 0.04014 0.77301+ 0.23358+ 0.80215+ 0.17489+ 0.79327+ 0.18709+
    20M-30N-10S 0.97315 0.17456 0.51097+ 0.52757+ 0.84647+ 0.36461+ 0.74630+ 0.48835+
    20M-40N-10S 0.87440 0.07848 0.73501+ 0.12918+ 0.80785+ 0.12685+ 0.79785+ 0.14953+
    25M-40N-10S 0.95382 0.09408 0.89869+ 0.14658+ 0.93671+ 0.10052= 0.90224+ 0.09777=
    30M-40N-10S 0.94910 0.10911 0.93293+ 0.16346+ 0.94881= 0.11868+ 0.94190+ 0.14346+
    Real-1 0.98426 0.10089 0.77856+ 0.29865+ 0.79490+ 0.30287+ 0.78771+ 0.25761+
    Real-2 0.96564 0.05132 0.87619+ 0.16981+ 0.90169+ 0.09354+ 0.85187+ 0.15740+
    Real-3 0.97003 0.22431 0.92007+ 0.35695+ 0.93587+ 0.33432+ 0.96637= 0.22856+
    +/-/= 15/0/0 15/0/0 13/0/2 14/0/1 14/0/1 14/0/1
    10M-10N-5S 0.98428+ 0.10658+ 0.98795= 0.11816+ 0.99009= 0.11218+
    10M-15N-5S 0.87415+ 0.16099+ 0.86120+ 0.16605+ 0.87402+ 0.12515+
    10M-15N-10S 0.87242+ 0.23220+ 0.86701+ 0.22302+ 0.85549+ 0.25300+
    15M-20N-5S 0.80580+ 0.35287+ 0.80364+ 0.35751+ 0.80681+ 0.32411+
    15M-20N-10S 0.90308+ 0.15268+ 0.80479+ 0.25375+ 0.76270+ 0.19806+
    15M-30N-5S 0.74572+ 0.23613+ 0.74964+ 0.21988+ 0.74641+ 0.16522+
    15M-30N-10S 0.82229+ 0.26220+ 0.85177+ 0.16454+ 0.85042+ 0.16622+
    20M-30N-5S 0.78010+ 0.22599+ 0.79598+ 0.14746+ 0.79434+ 0.17365+
    20M-30N-10S 0.52278+ 0.45390+ 0.54351+ 0.40593+ 0.57787+ 0.39774+
    20M-40N-10S 0.69624+ 0.16358+ 0.78799+ 0.11185+ 0.80452+ 0.11378+
    25M-40N-10S 0.90800+ 0.13031+ 0.92778+ 0.09934= 0.92141+ 0.15109+
    30M-40N-10S 0.91817+ 0.15803+ 0.94147+ 0.14479+ 0.94544= 0.12199+
    Real-1 0.78399+ 0.28787+ 0.79216+ 0.29067+ 0.80337+ 0.25183+
    Real-2 0.85814+ 0.17055+ 0.85469+ 0.11839+ 0.86265+ 0.04942=
    Real-3 0.95563+ 0.23613+ 0.94699+ 0.25314+ 0.92067+ 0.29233+
    +/-/= 15/0/0 15/0/0 14/0/1 14/0/1 13/0/2 14/0/1
    下载: 导出CSV
  • [1] HASTIE S. Standish group 2023 chaos report[R]. 2023. (查阅网上资料, 未找到本条文献信息, 请确认并补充报告编号).
    [2] CRAWFORD B, SOTO R, JOHNSON F, et al. A max–min ant system algorithm to solve the software project scheduling problem[J]. Expert Systems with Applications, 2014, 41(15): 6634–6645. doi: 10.1016/j.eswa.2014.05.003.
    [3] ALBA E and CHICANO J F. Software project management with GAs[J]. Information Sciences, 2007, 177(11): 2380–2401. doi: 10.1016/j.ins.2006.12.020.
    [4] LI Hongbo, ZHU Hanyu, ZHENG Linwen, et al. Software project scheduling with multitasking[J]. Economic Computation and Economic Cybernetics Studies and Research, 2023, 57(1): 153–170. doi: 10.24818/18423264/57.1.23.10.
    [5] LI Hongbo, ZHU Hanyu, ZHENG Linwen, et al. Software project scheduling under activity duration uncertainty[J]. Annals of Operations Research, 2024, 338(1): 477–512. doi: 10.1007/s10479-023-05343-0.
    [6] MASMOUDI M and HAÏT A. Project scheduling under uncertainty using fuzzy modelling and solving techniques[J]. Engineering Applications of Artificial Intelligence, 2013, 26(1): 135–149. doi: 10.1016/j.engappai.2012.07.012.
    [7] YU Hui, GAO Kaizhou, WU Naiqi, et al. Scheduling multiobjective dynamic surgery problems via Q-learning-based meta-heuristics[J]. IEEE Transactions on Systems, Man, and Cybernetics: Systems, 2024, 54(6): 3321–3333. doi: 10.1109/TSMC.2024.3352522.
    [8] MAHDAVI A, SHIRAZI B, and REZAEIAN J. Toward a scalable type-2 fuzzy model for resource-constrained project scheduling problem[J]. Applied Soft Computing, 2021, 100: 106988. doi: 10.1016/j.asoc.2020.106988.
    [9] LI Junqing, LIU Zhengmin, LI Chengdong, et al. Improved artificial immune system algorithm for type-2 fuzzy flexible job shop scheduling problem[J]. IEEE Transactions on Fuzzy Systems, 2021, 29(11): 3234–3248. doi: 10.1109/TFUZZ.2020.3016225.
    [10] JI Jianjiao, GUO Yinan, GAO Xiaozhi, et al. Q-Learning-Based hyperheuristic evolutionary algorithm for dynamic task allocation of crowdsensing[J]. IEEE Transactions on Cybernetics, 2023, 53(4): 2211–2224. doi: 10.1109/TCYB.2021.3112675.
    [11] HUANG Yao, GUO Yinan, CHEN Guoyu, et al. Q-learning assisted multi-objective evolutionary optimization for low-carbon scheduling of open-pit mine trucks[J]. Swarm and Evolutionary Computation, 2025, 92: 101778. doi: 10.1016/j.swevo.2024.101778.
    [12] 杨潇, 郭一楠, 吉建娇, 等. 异构群智感知PPO多目标任务指派方法[J]. 控制理论与应用, 2024, 41(6): 1056–1066. doi: 10.7641/CTA.2023.20950.

    YANG Xiao, GUO Yinan, JI Jianjiao, et al. PPO multi-objective task allocation method for heterogeneous crowd sensing[J]. Control Theory & Applications, 2024, 41(6): 1056–1066. doi: 10.7641/CTA.2023.20950.
    [13] CHEN Mengjiao, XU Jiyuan, ZHANG Wenyu, et al. A new customer-oriented multi-task scheduling model for cloud manufacturing considering available periods of services using an improved hyper-heuristic algorithm[J]. Expert Systems with Applications, 2025, 269: 126419. doi: 10.1016/j.eswa.2025.126419.
    [14] YANG Jinfeng, XU Hua, CHENG Jinhai, et al. A decomposition-based memetic algorithm to solve the biobjective green flexible job shop scheduling problem with interval type-2 fuzzy processing time[J]. Computers & Industrial Engineering, 2023, 183: 109513. doi: 10.1016/j.cie.2023.109513.
    [15] 杨和林, 郑梦婷, 刘帅, 等. 恶意干扰下的无人机辅助边缘计算加权能耗与时延智能优化[J]. 电子与信息学报, 2024, 46(7): 2879–2887. doi: 10.11999/JEIT230986.

    YANG Helin, ZHENG Mengting, LIU Shuai, et al. Intelligent weighted energy consumption and delay optimization for UAV-assisted MEC under malicious jamming[J]. Journal of Electronics & Information Technology, 2024, 46(7): 2879–2887. doi: 10.11999/JEIT230986.
    [16] DEB K, PRATAP A, AGARWAL S, et al. A fast and elitist multiobjective genetic algorithm: NSGA-II[J]. IEEE Transactions on Evolutionary Computation, 2002, 6(2): 182–197. doi: 10.1109/4235.996017.
    [17] MINKU L L, SUDHOLT D, and YAO Xin. Improved evolutionary algorithm design for the project scheduling problem based on runtime analysis[J]. IEEE Transactions on Software Engineering, 2014, 40(1): 83–102. doi: 10.1109/TSE.2013.52.
    [18] CHEN Weineng and ZHANG Jun. Ant colony optimization for software project scheduling and staffing with an event-based scheduler[J]. IEEE Transactions on Software Engineering, 2013, 39(1): 1–17. doi: 10.1109/TSE.2012.17.
    [19] CHANG C K, JIANG H Y, DI Yu, et al. Time-line based model for software project scheduling with genetic algorithms[J]. Information and Software Technology, 2008, 50(11): 1142–1154. doi: 10.1016/j.infsof.2008.03.002.
    [20] SHEN Xiaoning, MINKU L L, MARTURI N, et al. A Q-learning-based memetic algorithm for multi-objective dynamic software project scheduling[J]. Information Sciences, 2018, 428: 1–29. doi: 10.1016/j.ins.2017.10.041.
    [21] MAHMUD S, ABBASI A, CHAKRABORTTY R K, et al. A self-adaptive hyper-heuristic based multi-objective optimisation approach for integrated supply chain scheduling problems[J]. Knowledge-Based Systems, 2022, 251: 109190. doi: 10.1016/j.knosys.2022.109190.
    [22] CIMBALA J M. Taguchi orthogonal arrays[EB/OL]. https://www.me.psu.edu/cimbala/me345web_Fall_2014/Lectures/Taguchi_orthogonal_arrays.pdf, 2025.
    [23] ZHAO Fuqing, DI Shilu, and WANG Ling. A hyperheuristic with Q-learning for the multiobjective energy-efficient distributed blocking flow shop scheduling problem[J]. IEEE Transactions on Cybernetics, 2023, 53(5): 3337–3350. doi: 10.1109/TCYB.2022.3192112.
    [24] SHAO Zhongshi, SHAO Weishi, CHEN Jianrui, et al. A feedback learning-based selection hyper-heuristic for distributed heterogeneous hybrid blocking flow-shop scheduling problem with flexible assembly and setup time[J]. Engineering Applications of Artificial Intelligence, 2024, 131: 107818. doi: 10.1016/j.engappai.2023.107818.
    [25] WU Xiuli, CONSOLI P, MINKU L, et al. An evolutionary hyper-heuristic for the software project scheduling problem[C]. Proceedings of the 14th International Conference on Parallel Problem Solving from Nature–PPSN XIV, Edinburgh, UK, 2016: 37–47. doi: 10.1007/978-3-319-45823-6_4.
    [26] LI Rui, GONG Wenyin, LU Chao, et al. A learning-based memetic algorithm for energy-efficient flexible job-shop scheduling with type-2 fuzzy processing time[J]. IEEE Transactions on Evolutionary Computation, 2023, 27(3): 610–620. doi: 10.1109/TEVC.2022.3175832.
    [27] ZHU Lilu, WU Feng, HU Yanfeng, et al. A heuristic multi-objective task scheduling framework for container-based clouds via actor-critic reinforcement learning[J]. Neural Computing and Applications, 2023, 35(13): 9687–9710. doi: 10.1007/s00521-023-08208-6.
  • 加载中
图(6) / 表(6)
计量
  • 文章访问数:  25
  • HTML全文浏览量:  10
  • PDF下载量:  0
  • 被引次数: 0
出版历程
  • 修回日期:  2025-11-12
  • 录用日期:  2025-11-12
  • 网络出版日期:  2025-11-15

目录

    /

    返回文章
    返回