高级搜索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

高斯混合-概率假设密度滤波器的最优联邦均值融合

薛昱 徐磊

薛昱, 徐磊. 高斯混合-概率假设密度滤波器的最优联邦均值融合[J]. 电子与信息学报. doi: 10.11999/JEIT250759
引用本文: 薛昱, 徐磊. 高斯混合-概率假设密度滤波器的最优联邦均值融合[J]. 电子与信息学报. doi: 10.11999/JEIT250759
XUE Yu, XU Lei. Optimal Federated Average Fusion of Gaussian Mixture–Probability Hypothesis Density Filters[J]. Journal of Electronics & Information Technology. doi: 10.11999/JEIT250759
Citation: XUE Yu, XU Lei. Optimal Federated Average Fusion of Gaussian Mixture–Probability Hypothesis Density Filters[J]. Journal of Electronics & Information Technology. doi: 10.11999/JEIT250759

高斯混合-概率假设密度滤波器的最优联邦均值融合

doi: 10.11999/JEIT250759 cstr: 32379.14.JEIT250759
基金项目: 国家自然科学基金面上项目(62071386)
详细信息
    作者简介:

    薛昱:男,博士,工程师,研究方向为目标跟踪和多传感器信息融合

    徐磊:男,硕士,工程师,研究方向为雷达信号与信息处理

    通讯作者:

    薛昱 18829236362@163.com

  • 中图分类号: TN911.7

Optimal Federated Average Fusion of Gaussian Mixture–Probability Hypothesis Density Filters

Funds: The National Natural Science Foundation of China (62071386)
  • 摘要: 为实现最优不确定多目标分布式融合跟踪,该文提出一种高斯混合-概率假设密度(GM-PHD)滤波器的联邦均值融合算法,该算法具有分层式结构。每个传感器节点运行1个局域GM-PHD滤波器,从传感器量测中提取多目标状态估计。融合节点负责1个仅预测上一时刻融合结果的主滤波器,对所有滤波器的GM-PHD进行关联与合并,且为各滤波器分配融合结果和若干滤波器参数。关联将多目标密度融合分解为4种单目标估计融合,该文推导了有无漏检时的单目标最优估计融合方法。信息分配利用协方差上界理论消除了滤波器间的相关性,进而使所提算法能够获得与贝叶斯融合相同的精度。仿真结果表明,所提算法能够获得最优的跟踪精度,优于现有的算术平均(AA)融合算法,且可以灵活地调节各滤波器的相对可靠性。
  • 图  1  本文所提联邦均值融合算法的分层式结构图

    图  2  第1组平均因子的跟踪结果(主滤波器平均因子较小)

    图  3  第40 sT-GC的关联结果

    图  4  不同算法的平均OSPA误差曲线(第1组平均因子)

    图  5  第2组平均因子的跟踪结果(主滤波器平均因子较大

    图  6  不同算法的(a)目标数估计和(b)OSPA误差曲线

    图  7  取消基数一致性措施的目标数估计

    图  8  涉及时变平均因子和传感器故障的平均OSPA误差曲线

    图  9  关于杂波密度的误差箱型图+误差均值折线图

    表  1  GM-PHD滤波器联邦均值融合算法的总结

    步骤 操作
    1 根据式(7,8)为各滤波器分配GC、过程噪声协方差和合并门限,利用式(18,19)修正各滤波器GC的权重
    2 局域滤波器执行完整的GM-PHD滤波器,主滤波器仅执行预测
    3 各滤波器节点估计目标数$ \hat N_k^{(s)} $,将$ \hat N_k^{(s)} $个T-GC送至融合节点,利用式(17,19)修正T-GC的权重
    4 融合节点根据式(9,10)将T-GC关联为Gk组,记为式(11)
    5 根据式(12)合并GC权重,根据滤波器索引标签判断GC的来源,不同来源使用不同的方法执行合并,分别为
    (a)来源1 无漏检的存活目标:使用式(13)
    (b)来源2 有漏检的存活目标:使用式(14,15)
    (c)来源3 新生目标:使用式(16)
    (d)来源4 消亡目标:丢弃该GC
    6 得到当前时刻融合GM-PHD
    下载: 导出CSV
  • [1] 李克勇, 李楚晨, 蔡云泽. 群对群拦截协同态势感知关键技术[J]. 空天防御, 2025, 8(1): 1–9. doi: 10.3969/j.issn.2096-4641.2025.01.001.

    LI Keyong, LI Chuchen, and CAI Yunze. Key technologies for collaborative situational awareness based on swarm-to-swarm interception[J]. Air & Space Defense, 2025, 8(1): 1–9. doi: 10.3969/j.issn.2096-4641.2025.01.001.
    [2] CHONG C Y, MORI S, BARKER W H, et al. Architectures and algorithms for track association and fusion[J]. IEEE Aerospace and Electronic Systems Magazine, 2000, 15(1): 5–13. doi: 10.1109/62.821657.
    [3] BAR-SHALOM Y and CAMPO L. The effect of the common process noise on the two-sensor fused-track covariance[J]. IEEE Transactions on Aerospace and Electronic Systems, 1986, AES-22(6): 803–805. doi: 10.1109/TAES.1986.310815.
    [4] 王张夫, 汤显峰. 基于协方差交叉融合的多传感器数据融合研究[J]. 电子测量技术, 2024, 47(8): 78–85. doi: 10.19651/j.cnki.emt.2415396.

    WANG Zhangfu and TANG Xianfeng. Research on multi-sensor data fusion based on covariance cross fusion[J]. Electronic Measurement Technology, 2024, 47(8): 78–85. doi: 10.19651/j.cnki.emt.2415396.
    [5] CARLSON N A. Federated square root filter for decentralized parallel processors[J]. IEEE Transactions on Aerospace and Electronic Systems, 1990, 26(3): 517–525. doi: 10.1109/7.106130.
    [6] WANG Ziyi, LI Ning, WANG Zhao, et al. An adaptive federated filter based on variational Bayes with application to multisource navigation[J]. IEEE Sensors Journal, 2023, 23(9): 9859–9870. doi: 10.1109/JSEN.2023.3258932.
    [7] 薛昱, 冯西安. 一种纯方位多目标跟踪的联合多高斯混合概率假设密度滤波器[J]. 电子与信息学报, 2024, 46(11): 4295–4304. doi: 10.11999/JEIT240201.

    XUE Yu and FENG Xi'an. Joint multi-Gaussian mixture probability hypothesis density filter for bearings-only multi-target tracking[J]. Journal of Electronics & Information Technology, 2024, 46(11): 4295–4304. doi: 10.11999/JEIT240201.
    [8] WANG Liu, CHEN Guifen, ZHANG Lei, et al. Stochastic outlier selection via GM-CPHD fusion for multitarget tracking using sensors with different fields of view[J]. IEEE Sensors Journal, 2024, 24(6): 9148–9161. doi: 10.1109/JSEN.2024.3355903.
    [9] DAVIES E S and GARCÍA-FERNÁNDEZ Á F. Information exchange track-before-detect multi-Bernoulli filter for superpositional sensors[J]. IEEE Transactions on Signal Processing, 2024, 72: 607–621. doi: 10.1109/TSP.2024.3349769.
    [10] LIU Jiacheng, LIANG Meiling, MA Jinxuan, et al. Microbubble tracking based on partial smoothing-based adaptive generalized labelled Multi-Bernoulli filter for super-resolution imaging[J]. Ultrasonics, 2025, 145: 107455. doi: 10.1016/j.ultras.2024.107455.
    [11] YANG Chaoqun, CAO Xianghui, and SHI Zhiguo. Road-map aided Gaussian mixture labeled multi-Bernoulli filter for ground multi-target tracking[J]. IEEE Transactions on Vehicular Technology, 2023, 72(6): 7137–7147. doi: 10.1109/TVT.2023.3240740.
    [12] LIU Yang, XU Yong, WU Peipei, et al. Labelled non-zero diffusion particle flow SMC-PHD filtering for multi-speaker tracking[J]. IEEE Transactions on Multimedia, 2024, 26: 2544–2559. doi: 10.1109/TMM.2023.3301221.
    [13] BAILEY T, JULIER S, and AGAMENNONI G. On conservative fusion of information with unknown non-Gaussian dependence[C]. 2012 15th International Conference on Information Fusion, Singapore, Singapore, 2012: 1876–1883.
    [14] MAHLER R. Toward a theoretical foundation for distributed fusion[M]. HALL D, CHONG C Y, LLINAS J, et al. Distributed Data Fusion for Network-Centric Operations. Boca Raton: CRC Press, 2013.
    [15] ÜNEY M, CLARK D E, and JULIER S J. Distributed fusion of PHD filters via exponential mixture densities[J]. IEEE Journal of Selected Topics in Signal Processing, 2013, 7(3): 521–531. doi: 10.1109/JSTSP.2013.2257162.
    [16] GUNAY M, ORGUNER U, and DEMIREKLER M. Chernoff fusion of Gaussian mixtures based on sigma-point approximation[J]. IEEE Transactions on Aerospace and Electronic Systems, 2016, 52(6): 2732–2746. doi: 10.1109/TAES.2016.150403.
    [17] MAHLER R P S. Optimal/robust distributed data fusion: A unified approach[C]. Proceedings of SPIE 4052, Signal Processing, Sensor Fusion, and Target Recognition IX, Orlando, USA, 2000: 128–138. doi: 10.1117/12.395064. (查阅网上资料,未找到本条文献页码信息,请确认).
    [18] ABBAS A E. A Kullback-Leibler view of linear and log-linear pools[J]. Decision Analysis, 2009, 6(1): 25–37. doi: 10.1287/deca.1080.0133.
    [19] ÜNEY M, HOUSSINEAU J, DELANDE E, et al. Fusion of finite-set distributions: Pointwise consistency and global cardinality[J]. IEEE Transactions on Aerospace and Electronic Systems, 2019, 55(6): 2759–2773. doi: 10.1109/TAES.2019.2893083.
    [20] GAO Lin, BATTISTELLI G, and CHISCI L. Multiobject fusion with minimum information loss[J]. IEEE Signal Processing Letters, 2020, 27: 201–205. doi: 10.1109/LSP.2019.2963817.
    [21] LI Tiancheng, CORCHADO J M, and SUN Shudong. On generalized covariance intersection for distributed PHD filtering and a simple but better alternative[C]. 2017 20th International Conference on Information Fusion (Fusion), Xi’an, China, 2017: 1–8. doi: 10.23919/ICIF.2017.8009732.
    [22] GOSTAR A K, HOSEINNEZHAD R, and BAB-HADIASHAR A. Cauchy-Schwarz divergence-based distributed fusion with Poisson random finite sets[C]. 2017 International Conference on Control, Automation and Information Sciences (ICCAIS), Chiang Mai, Thailand, 2017: 112–116. doi: 10.1109/ICCAIS.2017.8217559.
    [23] DING Changwen, SHAO Chuntao, ZHOU Siteng, et al. Distributed multi-target tracking with labeled multi-Bernoulli filter considering efficient label matching[J]. Frontiers of Information Technology & Electronic Engineering, 2025, 26(3): 400–414. doi: 10.1631/FITEE.2400582.
    [24] LI Tiancheng, CORCHADO J M, and SUN Shudong. Partial consensus and conservative fusion of Gaussian mixtures for distributed PHD fusion[J]. IEEE Transactions on Aerospace and Electronic Systems, 2019, 55(5): 2150–2163. doi: 10.1109/TAES.2018.2882960.
    [25] LI Tiancheng. Arithmetic average density fusion—Part II: Unified derivation for unlabeled and labeled RFS fusion[J]. IEEE Transactions on Aerospace and Electronic Systems, 2024, 60(3): 3255–3268. doi: 10.1109/TAES.2024.3359592.
    [26] YANG Hao, LI Tiancheng, YAN Junkun, et al. Hierarchical average fusion with GM-PHD filters against FDI and DoS attacks[J]. IEEE Signal Processing Letters, 2024, 31: 934–938. doi: 10.1109/LSP.2024.3356823.
    [27] XUE Yu and FENG Xi’an. An optimal hierarchical arithmetic average fusion of GM-PHD filters[J]. IEEE Signal Processing Letters, 2025, 32: 1605–1609. doi: 10.1109/LSP.2025.3554142.
    [28] LI Tiancheng, LIANG Haozhe, LI Guchong, et al. Arithmetic average density fusion—Part IV: Distributed heterogeneous fusion of RFS and LRFS filters via variational approximation[J]. IEEE Transactions on Signal Processing, 2025, 73: 1454–1469. doi: 10.1109/TSP.2025.3550157.
    [29] 李天成, 李固冲, 李文硕, 等. 均值融合跟踪概念、理论与方法[J/OL]. 中国科学: 信息科学. https://www.sciengine.com/SSI/doi/10.1360/SSI-2025-0080.

    LI Tiancheng, LI Guchong, LI Wenshuo, et al. Concepts, theories and methods for average fusion tracking[J/OL]. Scientia Sinica Informationis. https://www.sciengine.com/SSI/doi/10.1360/SSI-2025-0080. (查阅网上资料,未找到本条文献引用日期信息,请补充).
    [30] MAHLER R. Approximate multisensor CPHD and PHD filters[C]. 2010 13th International Conference on Information Fusion, Edinburgh, UK, 2010: 1–8. doi: 10.1109/ICIF.2010.5711984.
    [31] SUN Shuli. Distributed optimal linear fusion estimators[J]. Information Fusion, 2020, 63: 56–73. doi: 10.1016/j.inffus.2020.05.006.
    [32] WEI Jingxin, LUO Feng, CHEN Shichao, et al. Robust fusion of GM-PHD filters based on geometric average[J]. Signal Processing, 2023, 206: 108912. doi: 10.1016/j.sigpro.2022.108912.
    [33] LI Tiancheng, SONG Yan, SONG Enbin, et al. Arithmetic average density fusion-Part I: Some statistic and information-theoretic results[J]. Information Fusion, 2024, 104: 102199. doi: 10.1016/j.inffus.2023.102199.
    [34] 李寿鹏, 陶贞吉, 张晓宇, 等. 基于分布式信息滤波的集群导弹协同定位方法[J]. 空天防御, 2024, 7(2): 36–41. doi: 10.3969/j.issn.2096-4641.2024.02.006.

    LI Shoupeng, TAO Zhenji, ZHANG Xiaoyu, et al. Distributed information filtering-based cooperative localization method for cluster missiles[J]. Air & Space Defense, 2024, 7(2): 36–41. doi: 10.3969/j.issn.2096-4641.2024.02.006.
    [35] SCHUHMACHER D, VO B T, and VO B N. A consistent metric for performance evaluation of multi-object filters[J]. IEEE Transactions on Signal Processing, 2008, 56(8): 3447–3457. doi: 10.1109/TSP.2008.920469.
  • 加载中
图(9) / 表(1)
计量
  • 文章访问数:  11
  • HTML全文浏览量:  5
  • PDF下载量:  2
  • 被引次数: 0
出版历程
  • 收稿日期:  2025-08-19
  • 修回日期:  2025-09-29
  • 网络出版日期:  2025-10-22

目录

    /

    返回文章
    返回