高级搜索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

多无人机射频信号CNN|Triplet-DNN异构网络特征提取与机型识别

赵慎 李广选 周鲜成 黄雯蒂 杨玲玲 高丽萍

赵慎, 李广选, 周鲜成, 黄雯蒂, 杨玲玲, 高丽萍. 多无人机射频信号CNN|Triplet-DNN异构网络特征提取与机型识别[J]. 电子与信息学报. doi: 10.11999/JEIT250757
引用本文: 赵慎, 李广选, 周鲜成, 黄雯蒂, 杨玲玲, 高丽萍. 多无人机射频信号CNN|Triplet-DNN异构网络特征提取与机型识别[J]. 电子与信息学报. doi: 10.11999/JEIT250757
ZHAO Shen, LI Guangxuan, ZHOU Xiancheng, HUANG Wendi, YANG Lingling, GAO Liping. Multi-UAV RF Signals CNN|Triplet-DNN Heterogeneous Network Feature Extraction and Type Recognition[J]. Journal of Electronics & Information Technology. doi: 10.11999/JEIT250757
Citation: ZHAO Shen, LI Guangxuan, ZHOU Xiancheng, HUANG Wendi, YANG Lingling, GAO Liping. Multi-UAV RF Signals CNN|Triplet-DNN Heterogeneous Network Feature Extraction and Type Recognition[J]. Journal of Electronics & Information Technology. doi: 10.11999/JEIT250757

多无人机射频信号CNN|Triplet-DNN异构网络特征提取与机型识别

doi: 10.11999/JEIT250757 cstr: 32379.14.JEIT250757
基金项目: 国家自然科学基金项目(No.62303176),湖南省重点研发计划项目(No.2024AQ2033),湖南省自然科学基金项目(No.2024JJ9188, No.2025JJ90243),湖南省教育厅科研基金项目(No.21B0577),湖南省研究生科研创新项目(CX20251684, LXBZZ2024349)
详细信息
    作者简介:

    赵慎:男,博士,副教授,硕士生导师,研究方向为智能无线感知,导航时空信息安全

    李广选:男,硕士生,研究方向为反无人机信号侦测

    周鲜成:男,博士,教授,博士生导师,研究方向为智能信息处理,生物特征识别

    黄雯蒂:女,博士,讲师,硕士生导师,研究方向为系统建模与优化,智能信息感知

    杨玲玲:女,博士,讲师,硕士生导师,研究方向为光电信号检测及处理

    高丽萍:女,硕士生,研究方向为反无人机信号侦测

    通讯作者:

    周鲜成 zxc6501@126.com

  • 中图分类号: TP391.45

Multi-UAV RF Signals CNN|Triplet-DNN Heterogeneous Network Feature Extraction and Type Recognition

Funds: National Natural Science Foundation of China(No.62303176), Key Research and Development Plan Project of Hunan Province (No. 2024AQ2033), Natural Science Foundation of Hunan Province (No.2024JJ9188, No.2025JJ90243), Scientific Research Foundation of Hunan Provincial Department of Education (No.21B0577), Postgraduate Research Innovation Project of Hunan Provincial(CX20251684, LXBZZ2024349)
  • 摘要: 随着无人机技术的广泛应用,多机共存场景中机型识别对空域管理与黑飞无人机反制具有重要意义。针对射频(RF)信号的特征提取与机型识别需求,提出CNN|Triplet-DNN异构网络模型。该模型采用不同深度卷积层与三元组(Triplet)结合的三分支结构,通过交叉熵、中心及三元组损失的动态协同,从分类准确性、类内聚集性和类间分离性三个角度,提取并融合时频图的异构多层特征;进一步利用深度神经网络(DNN)增强特征的非线性拟合能力,提升机型的识别准确率。基于DroneRFa数据集进行消融实验,验证了模型分支设计的有效性;通过叠加DroneRFa中单无人机信号模拟四类及以下多机共存场景,CNN|Triplet-DNN模型的机型识别准确率达83%~100%;在实飞实验中,该模型对二、三、四类共存场景中的机型识别准确率分别为86%、57%和73%。与CNN、Triplet-CNN和Transformer模型相比,CNN|Triplet-DNN模型的识别性能更优。
  • 图  1  CNN模型的结构图及低高层级的特征图

    图  2  Triplet网络结构图

    图  3  CNN|Triplet-DNN网络架构

    图  4  DroneRFa部分/多无人机RF信号叠加的时频图

    图  5  对比模型与CNN|Triplet-DNN模型的结构配置

    图  6  CNN|Triplet-DNN模型各分支特征的均值及方差分布图

    图  7  基于DroneRFa单无人机RF时频图的CNN|Triplet-DNN模型消融实验的性能参数

    图  8  各模型对DroneRFa单无人机RF时频图的识别效果

    图  9  DroneRFa单无人机RF时频图模型训练的性能参数

    图  10  各模型对DroneRFa数据集多无人机分类任务准确率

    图  11  实飞场景下部分单/多无人机的信号时频图

    图  12  实飞场景下单无人机RF时频图的模型训练性能参数

    图  13  实飞场景下单/多无人机各模型分类准确率

    表  1  各层网络模型的训练效果指标

    网络深度准确率精确率召回率F1分数训练时间(s)全部参数(个)
    30.89470.82200.89470.851157.4910,654,192
    40.89740.82350.89530.852152.722,728,496
    50.94470.97370.94730.950948.861,196,720
    60.89470.82020.89470.851147.75557,872
    下载: 导出CSV

    表  2  四类无人机具体参数

    无人机型号标记类起飞重量(g)最大飞行速度(m/s)图传技术协议图传信号带宽(MHz)
    大疆精灵4 ProA1,37520OcuSync 2.015~20
    大疆经纬Matrice 4B1,21921OcuSync 4.05~40
    大疆御3C89521OcuSync 3.0+5~10
    道通智能EVO LiteD83518Autel SkyLink5~10
    下载: 导出CSV
  • [1] RAHMAN M S, KHALIL I, and ATIQUZZAMAN M. Blockchain-powered policy enforcement for ensuring flight compliance in drone-based service systems[J]. IEEE Network, 2021, 35(1): 116–123. doi: 10.1109/MNET.011.2000219.
    [2] SHAN Lin, MIURA R, MATSUDA T, et al. Vehicle-to-vehicle based autonomous flight coordination control system for safer operation of unmanned aerial vehicles[J]. Drones, 2023, 7(11): 669. doi: 10.3390/drones7110669.
    [3] 赵慎, 诸皓冉, 周超, 等. 声学探测无人机中的麦克风立体阵列优化设计[J]. 电子测量与仪器学报, 2025, 39(5): 155–165. doi: 10.13382/j.jemi.B2407714.

    ZHAO Shen, ZHU Haoran, ZHOU Chao, et al. Optimization design of microphone array for acoustic detection drones[J]. Journal of Electronic Measurement and Instrumentation, 2025, 39(5): 155–165. doi: 10.13382/j.jemi.B2407714.
    [4] CAI Zhenxin, WANG Yu, JIANG Qi, et al. Toward intelligent lightweight and efficient UAV identification with RF fingerprinting[J]. IEEE Internet of Things Journal, 2024, 11(15): 26329–26339. doi: 10.1109/JIOT.2024.3395466.
    [5] MAGANAHALLI G M, MARUTHI A, UTTARKAR C, et al. Neural network-based classification of unmanned aerial vehicle flight modes using convolution and transfer learning[J]. AIP Conference Proceedings, 2025, 3278(1): 020025. doi: 10.1063/5.0262989.
    [6] FENG Junhao, TANG Xiaogang, ZHANG Binquan, et al. A lightweight deep learning RF fingerprint recognition method[C]. Proceedings of the 4th International Conference on Communications, Information System and Computer Engineering, Shenzhen, China, 2022: 452–457. doi: 10.1109/CISCE55963.2022.9851177.
    [7] LI Chaoqun, WANG Jinming, WANG Wenyan, et al. RF-based on feature fusion and convolutional neural network classification of UAVs[C]. Proceedings of the IEEE 8th International Conference on Computer and Communications, Chengdu, China, 2022: 1899–1904. doi: 10.1109/ICCC56324.2022.10065895.
    [8] 周景贤, 李希娜. 基于改进卷积神经网络和射频指纹的无人机检测与识别[J]. 计算机应用, 2024, 44(3): 876–882. doi: 10.11772/j.issn.1001-9081.2023030299.

    ZHOU Jingxian and LI Xina. UAV detection and recognition based on improved convolutional neural network and radio frequency fingerprint[J]. Journal of Computer Applications, 2024, 44(3): 876–882. doi: 10.11772/j.issn.1001-9081.2023030299.
    [9] 晏行伟, 孔令轩, 刘坤, 等. 基于MobileNet-DOA的无人机射频信号识别方法[J]. 雷达科学与技术, 2025, 23(1): 57–66. doi: 10.3969/j.issn.1672-2337.2025.01.006.

    YAN Xingwei, KONG Lingxuan, LIU Kun, et al. Drone radio frequency signal identification method based on MobileNet-DOA[J]. Radar Science and Technology, 2025, 23(1): 57–66. doi: 10.3969/j.issn.1672-2337.2025.01.006.
    [10] 曾政智, 周嘉伟, 罗正华. 同频段混合信号中的无人机信号盲检测识别[J]. 电讯技术, 2020, 60(6): 689–694. doi: 10.3969/j.issn.1001-893x.2020.06.013.

    ZENG Zhengzhi, ZHOU Jiawei, and LUO Zhenghua. Blind detection and recognition of UAV signal in mixed signal in same frequency band[J]. Telecommunication Engineering, 2020, 60(6): 689–694. doi: 10.3969/j.issn.1001-893x.2020.06.013.
    [11] SAZDIĆ-JOTIĆ B, POKRAJAC I, BAJČETIĆ J, et al. Single and multiple drones detection and identification using RF based deep learning algorithm[J]. Expert Systems with Applications, 2022, 187: 115928. doi: 10.1016/j.eswa.2021.115928.
    [12] XU Chengtao, CHEN Bowen, LIU Yongxin, et al. RF fingerprint measurement for detecting multiple amateur drones based on STFT and feature reduction[C]. 2020 Integrated Communications Navigation and Surveillance Conference (ICNS), Herndon, USA, 2020: 4G1. doi: 10.1109/ICNS50378.2020.9223013.
    [13] ZHANG Jiangfan, ZHANG Yan, SHI Zhiguang, et al. Unmanned aerial vehicle object detection based on information-preserving and fine-grained feature aggregation[J]. Remote Sensing, 2024, 16(14): 2590. doi: 10.3390/rs16142590.
    [14] 张萌, 李响, 张经纬. 基于图像偏移角和多分支卷积神经网络的旋转不变模型设计[J]. 电子与信息学报, 2024, 46(12): 4522–4528. doi: 10.11999/JEIT240417.

    ZHANG Meng, LI Xiang, and ZHANG Jingwei. Design of rotation invariant model based on image offset angle and multibranch convolutional neural networks[J]. Journal of Electronics & Information Technology, 2024, 46(12): 4522–4528. doi: 10.11999/JEIT240417.
    [15] ZHENG Yunfei, ZHANG Xuejun, WANG Shenghan, et al. Convolutional neural network and ensemble learning-based unmanned aerial vehicles radio frequency fingerprinting identification[J]. Drones, 2024, 8(8): 391. doi: 10.3390/drones8080391.
    [16] CHA B R and VAIDYA B. Enhancing human activity recognition with Siamese networks: A comparative study of contrastive and triplet learning approaches[J]. Electronics, 2024, 13(9): 1739. doi: 10.3390/electronics13091739.
    [17] SINGH G, STEFENON S F, and YOW K C. The shallowest transparent and interpretable deep neural network for image recognition[J]. Scientific Reports, 2025, 15(1): 13940. doi: 10.1038/s41598-025-92945-2.
    [18] 俞宁宁, 毛盛健, 周成伟, 等. DroneRFa: 用于侦测低空无人机的大规模无人机射频信号数据集[J]. 电子与信息学报, 2024, 46(4): 1147–1156. doi: 10.11999/JEIT230570.

    YU Ningning, MAO Shengjian, ZHOU Chengwei, et al. DroneRFa: A large-scale dataset of drone radio frequency signals for detecting low-altitude drones[J]. Journal of Electronics & Information Technology, 2024, 46(4): 1147–1156. doi: 10.11999/JEIT230570.
    [19] HAN Jia, YU Zhiyong, YANG Jian, et al. Real-world UAV recognition based on radio frequency fingerprinting with transformer[J]. IET Communications, 2025, 19(1): e70004. doi: 10.1049/cmu2.70004.
    [20] ROMAN-RANGEL E and MARCHAND-MAILLET S. Inductive t-SNE via deep learning to visualize multi-label images[J]. Engineering Applications of Artificial Intelligence, 2019, 81: 336–345. doi: 10.1016/j.engappai.2019.01.015.
  • 加载中
图(13) / 表(2)
计量
  • 文章访问数:  52
  • HTML全文浏览量:  24
  • PDF下载量:  3
  • 被引次数: 0
出版历程
  • 录用日期:  2025-12-29
  • 网络出版日期:  2026-01-15

目录

    /

    返回文章
    返回