高级搜索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

多步随机观测滞后和丢包系统极大极小鲁棒Kalman滤波

杨春山 赵颖 刘政 丘源 经本钦

杨春山, 赵颖, 刘政, 丘源, 经本钦. 多步随机观测滞后和丢包系统极大极小鲁棒Kalman滤波[J]. 电子与信息学报. doi: 10.11999/JEIT250741
引用本文: 杨春山, 赵颖, 刘政, 丘源, 经本钦. 多步随机观测滞后和丢包系统极大极小鲁棒Kalman滤波[J]. 电子与信息学报. doi: 10.11999/JEIT250741
YANG Chunshan, ZHAO Ying, LIU Zheng, QIU Yuan, JING Benqin. Minimax Robust Kalman Filtering under Multistep Random Measurement Delays and Packet Dropouts[J]. Journal of Electronics & Information Technology. doi: 10.11999/JEIT250741
Citation: YANG Chunshan, ZHAO Ying, LIU Zheng, QIU Yuan, JING Benqin. Minimax Robust Kalman Filtering under Multistep Random Measurement Delays and Packet Dropouts[J]. Journal of Electronics & Information Technology. doi: 10.11999/JEIT250741

多步随机观测滞后和丢包系统极大极小鲁棒Kalman滤波

doi: 10.11999/JEIT250741 cstr: 32379.14.JEIT250741
基金项目: 国家自然科学基金(62263009),广西自然科学基金(GXNSFAA069941, GXNSFAA069180),桂林航天工业学院特色优势交叉学科发展战略研究专项课题(TS2024241)
详细信息
    作者简介:

    杨春山:男,教授,研究方向为网络系统鲁棒滤波、多传感器信息融合

    赵颖:女,高级工程师,研究方向为网络系统鲁棒滤波、系统辨识

    刘政:男,教授,研究方向为网络系统鲁棒滤波、系统辨识

    丘源:男,高级工程师,研究方向为网络系统鲁棒滤波、系统辨识

    通讯作者:

    杨春山 ycszy1999@guat.edu.cn

  • 中图分类号: TN911.7; TP391; TP18

Minimax Robust Kalman Filtering under Multistep Random Measurement Delays and Packet Dropouts

Funds: The National Natural Science Foundation of China (62263009), Guangxi Natural Science Foundation (GXNSFAA069941 and GXNSFAA069180), GUAT Special Research Project on the Strategic Development of Distinctive Interdisciplinary Fields (TS2024241)
  • 摘要: 该文研究了多步随机观测滞后和丢包系统的极大极小鲁棒Kalman滤波问题。系统噪声方差不确定但有已知保守上界,传感器到估值器的多步随机观测滞后和丢包通过一组概率已知的伯努利分布随机变量描述。利用哈达玛乘积改进模型转换方法,设计了极大极小鲁棒时变Kalman估值器。利用矩阵初等变换、盖尔圆盘定理和哈达玛乘积定理证明了广义李雅普诺夫方程解的半正定性,进而应用矩阵分解和李雅普诺夫方程方法证明了所设计估值器的鲁棒性,即对所有容许的不确定性,确保实际估计误差方差有最小上界。给出时变广义李雅普诺夫方程存在稳态唯一半正定解的条件,进而设计了鲁棒稳态估值器。证明了时变和稳态估值器的按实现收敛性。仿真实例验证了其有效性。
  • 图  1  航空发动机的实际状态及其一步平滑估计

    图  2  时变Kalman估值器的实际和鲁棒精度

    图  3  未知时变噪声方差的鲁棒估值器实际和鲁棒精度

    图  4  鲁棒Kalman估值器的MSE曲线

    图  5  实际精度随$ 0.1 \le {\alpha _0},{\alpha _1},{\alpha _2} \le 1 $变化情况

    图  6  实际的一步平滑器精度$ {\text{tr}}{\boldsymbol{\bar P}}(1) $随$ 0.1 \le \delta ,\alpha \le 0.9 $变化

    图  7  两种方法预报器的AMSE比较

    表  1  鲁棒稳态Kalman估值器的实际和鲁棒精度

    ${\text{tr}}{\boldsymbol{P}}( - 1)$ ${\text{tr}}{\boldsymbol{P}}(0)$ ${\text{tr}}{\boldsymbol{P}}(1)$ ${\text{tr}}{\boldsymbol{P}}(2)$
    1.5742 1.3780 1.1550 1.0702
    ${\text{tr}}{\boldsymbol{\bar P}}( - 1)$ ${\text{tr}}{\boldsymbol{\bar P}}(0)$ ${\text{tr}}{\boldsymbol{\bar P}}(1)$ ${\text{tr}}{\boldsymbol{\bar P}}(2)$
    1.2292 1.0779 0.9043 0.8381
    下载: 导出CSV

    表  2  两种方法的精度比较

    两种方法的
    精度
    本文实际
    精度
    文献[20]最优
    精度
    预报器0.14960.1491
    滤波器0.14740.1468
    一步平滑器0.14470.1440
    二步平滑器0.14180.1409
    下载: 导出CSV
  • [1] 徐心宇, 陈建. 无人机状态检测Kalman滤波空地目标跟踪算法[J]. 航空学报, 2024, 45(16): 329834. doi: 10.7527/S1000-6893.2024.29834.

    XU Xinyu and CHEN Jian. UAV object tracking for air-ground targets based on status detection and Kalman filter[J]. Acta Aeronautica et Astronautica Sinica, 2024, 45(16): 329834. doi: 10.7527/S1000-6893.2024.29834.
    [2] 秦家虎, 马麒超, 李曼, 等. 多智能体协同研究进展综述: 博弈和控制交叉视角[J]. 自动化学报, 2025, 51(3): 489–509. doi: 10.16383/j.aas.c240508.

    QIN Jiahu, MA Qichao, LI Man, et al. Recent advances on multi-agent collaboration: A cross-perspective of game and control theory[J]. Acta Automatica Sinica, 2025, 51(3): 489–509. doi: 10.16383/j.aas.c240508.
    [3] 邓洪高, 余润华, 纪元法, 等. 偏差未补偿自适应边缘化容积卡尔曼滤波跟踪方法[J]. 电子与信息学报, 2025, 47(1): 156–166. doi: 10.11999/JEIT240469.

    DENG Honggao, YU Runhua, JI Yuanfa, et al. An adaptive target tracking method utilizing marginalized cubature Kalman filter with uncompensated biases[J]. Journal of Electronics & Information Technology, 2025, 47(1): 156–166. doi: 10.11999/JEIT240469.
    [4] 孙小君, 周晗, 闫广明. 基于新息的自适应增量Kalman滤波器[J]. 电子与信息学报, 2020, 42(9): 2223–2230. doi: 10.11999/JEIT190493.

    SUN Xiaojun, ZHOU Han, and YAN Guangming. Adaptive incremental Kalman filter based on innovation[J]. Journal of Electronics & Information Technology, 2020, 42(9): 2223–2230. doi: 10.11999/JEIT190493.
    [5] ZHOU Zebo, ZHANG Zeliang, and ZHU Shuai. Adaptive Kalman filtering with uncertain system noises based on variance component estimation theory[J]. IEEE Sensors Journal, 2024, 24(11): 17896–17906. doi: 10.1109/JSEN.2024.3386683.
    [6] 林爽, 张依恋, 丁宗贺, 等. 基于改进集员滤波的港口自动跨运车状态估计方法[J]. 控制与决策, 2024, 39(1): 129–136. doi: 10.13195/j.kzyjc.2022.0501.

    LIN Shuang, ZHANG Yilian, DING Zonghe, et al. State estimation of automated straddle carriers via improved set-membership filtering approach[J]. Control and Decision, 2024, 39(1): 129–136. doi: 10.13195/j.kzyjc.2022.0501.
    [7] SUN Shiyu, CHEN Dongyan, HU Jun, et al. Event-triggered set-membership state estimation for discrete delayed linear systems over sensor networks[J]. Circuits, Systems, and Signal Processing, 2024, 43(8): 4813–4835. doi: 10.1007/s00034-024-02689-z.
    [8] ZHANG Huanshui, ZHANG D, XIE Lihua, et al. Robust filtering under stochastic parametric uncertainties[J]. Automatica, 2004, 40(9): 1583–1589. doi: 10.1016/j.automatica.2004.04.002.
    [9] WANG Rusheng, CHEN Bo, and YU Li. Distributed nonlinear fusion estimation without knowledge of noise statistical information: A robust design approach[J]. IEEE Transactions on Aerospace and Electronic Systems, 2021, 57(5): 3107–3117. doi: 10.1109/TAES.2021.3069270.
    [10] QI Wenjuan, ZHANG Peng, and DENG Zili. Robust weighted fusion Kalman filters for multisensor time-varying systems with uncertain noise variances[J]. Signal Processing, 2014, 99: 185–200. doi: 10.1016/j.sigpro.2013.12.013.
    [11] GAO Yuan and DENG Zili. Robust weighted fusion Kalman estimators for networked multisensor mixed uncertain systems with random one-step sensor delays, uncertain-variance multiplicative, and additive white noises[J]. IEEE Sensors Journal, 2019, 19(22): 10935–10946. doi: 10.1109/JSEN.2019.2935163.
    [12] 杨春山, 经本钦, 刘政, 等. 具有噪声方差及多种网络诱导不确定系统鲁棒Kalman估计[J]. 控制理论与应用, 2021, 38(10): 1607–1618. doi: 10.7641/CTA.2021.00598.

    YANG Chunshan, JING Benqin, LIU Zheng, et al. Robust Kalman estimation for system with uncertainties of noise variances and multiple networked inducements[J]. Control Theory & Applications, 2021, 38(10): 1607–1618. doi: 10.7641/CTA.2021.00598.
    [13] GAO Yuan and DENG Zili. Robust integrated sequential covariance intersection fusion Kalman filters and their convergence and stability for networked sensor systems with five uncertainties[J]. International Journal of Robust and Nonlinear Control, 2023, 33(2): 1371–1406. doi: 10.1002/rnc.6465.
    [14] YANG Chunshan, ZHAO Ying, and LIU Zheng. Robust weighted fusion Kalman filters under linearly correlated noise and mixed uncertainties of noise variances, multiplicative noises, and multiple networked inducements[J]. Asian Journal of Control, 2024, 26(1): 205–226. doi: 10.1002/asjc.3195.
    [15] YANG Chunshan, ZHAO Ying, LIU Zheng, et al. Robust weighted fusion Kalman estimators for systems with uncertain noise variances, multiplicative noises, missing measurements, packets dropouts and two-step random measurement delays[J]. Optimal Control Applications and Methods, 2023, 44(5): 2744–2774. doi: 10.1002/oca.3002.
    [16] HU Jun, WANG Zidong, LIU S, et al. A variance-constrained approach to recursive state estimation for time-varying complex networks with missing measurements[J]. Automatica, 2016, 64: 155–162. doi: 10.1016/j.automatica.2015.11.008.
    [17] HORN R A and JOHNSON C R. Matrix Analysis[M]. 2nd ed. New York: Cambridge University Press, 2012: 387–485.
    [18] SUN Shuli and XIAO Wendong. Optimal linear estimators for systems with multiple random measurement delays and packet dropouts[J]. International Journal of Systems Science, 2013, 44(2): 358–370. doi: 10.1080/00207721.2011.601347.
    [19] LIU Ming, ZHANG Lixian, SHI Peng, et al. Sliding mode control of continuous-time Markovian jump systems with digital data transmission[J]. Automatica, 2017, 80: 200–209. doi: 10.1016/j.automatica.2017.02.002.
    [20] MA Jing and SUN Shuli. Optimal linear estimators for multi-sensor stochastic uncertain systems with packet losses of both sides[J]. Digital Signal Processing, 2015, 37: 24–34. doi: 10.1016/j.dsp.2014.11.005.
  • 加载中
图(7) / 表(2)
计量
  • 文章访问数:  37
  • HTML全文浏览量:  16
  • PDF下载量:  8
  • 被引次数: 0
出版历程
  • 收稿日期:  2025-08-12
  • 修回日期:  2025-10-15
  • 录用日期:  2025-11-03
  • 网络出版日期:  2025-11-12

目录

    /

    返回文章
    返回