高级搜索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

面向低轨星座的空间激光通信终端全视场微弧度级光学标定方法

解青坤 徐常志 边晶莹 郑小松 张博

解青坤, 徐常志, 边晶莹, 郑小松, 张博. 面向低轨星座的空间激光通信终端全视场微弧度级光学标定方法[J]. 电子与信息学报. doi: 10.11999/JEIT250734
引用本文: 解青坤, 徐常志, 边晶莹, 郑小松, 张博. 面向低轨星座的空间激光通信终端全视场微弧度级光学标定方法[J]. 电子与信息学报. doi: 10.11999/JEIT250734
XIE Qingkun, XU Changzhi, BIAN Jingying, ZHENG Xiaosong, ZHANG Bo. Full Field-of-View Optical Calibration with Microradian-Level Accuracy for Space Laser Communication Terminals on Low-Earth-Orbit Constellation Applications[J]. Journal of Electronics & Information Technology. doi: 10.11999/JEIT250734
Citation: XIE Qingkun, XU Changzhi, BIAN Jingying, ZHENG Xiaosong, ZHANG Bo. Full Field-of-View Optical Calibration with Microradian-Level Accuracy for Space Laser Communication Terminals on Low-Earth-Orbit Constellation Applications[J]. Journal of Electronics & Information Technology. doi: 10.11999/JEIT250734

面向低轨星座的空间激光通信终端全视场微弧度级光学标定方法

doi: 10.11999/JEIT250734 cstr: 32379.14.JEIT250734
详细信息
    作者简介:

    解青坤:男,工程师,研究方向为空间激光通信

    徐常志:男,研究员,研究方向为空间激光通信

    边晶莹:女,高级工程师,研究方向为空间激光通信

    郑小松:男,研究员,研究方向为空间激光通信

    张博:男,工程师,研究方向为空间激光通信

    通讯作者:

    徐常志 sandy_xu@126.com

  • 中图分类号: TN929

Full Field-of-View Optical Calibration with Microradian-Level Accuracy for Space Laser Communication Terminals on Low-Earth-Orbit Constellation Applications

  • 摘要: 星间激光通信因其具有超大信道容量、极低传输损耗和物理层高安全性,已成为下一代低轨巨型星座实现全球高速数据传输的核心技术。然而,低轨卫星的高速相对运动与复杂轨道摄动,对激光终端的快速建链与稳定跟踪构成了严峻挑战。为实现稳定可靠的通信链路,必须在全空间范围内建立粗指向机构(CPA)与探测器间微弧度量级的光学标定关系。该文提出一种面向低轨星座的全视场微弧度级光学标定方法,将复杂光机耦合误差统一建模为线性映射关系,利用CPA的随机微扰动运动构建其转角微偏移量与探测器光斑位移间的共轭关系,从而精确估计光学标定矩阵。实验结果表明,该方法可有效抑制光学像旋、跨象限运动、异常跟踪及镜像等系统误差,全空间跟踪精度优于5 μrad,显著提升了终端动态跟踪性能。
  • 图  1  激光终端组成示意图

    图  2  潜望式CPA光路示意图

    图  3  随机微扰动标定测量法流程图

    图  4  潜望式激光终端CPA光学标定及验证实验测试平台

    图  5  CPA单步开环指向工况下的光斑质心运动轨迹曲线

    图  6  激光终端动态跟踪实验结果

    表  1  CPA和光斑位移共轭运动实验测试结果

    次数 △cpaxj/LSB △cpayj/LSB △xj/pixel △yj/pixel
    1 –350 –150.30 –3.6 –8.4
    2 300 125.25 3.0 7.2
    3 –125 450.90 10.8 –3.0
    4 150 225.45 5.4 3.6
    下载: 导出CSV
  • [1] KODHELI O, LAGUNAS E, MATURO N, et al. Satellite communications in the New Space Era: A survey and future challenges[J]. IEEE Communications Surveys & Tutorials, 2021, 23(1): 70–109. doi: 10.1109/COMST.2020.3028247.
    [2] SINGYAP K and ALOUINI M S. Performance of UAV-assisted multiuser terrestrial-satellite communication system over mixed FSO/RF channels[J]. IEEE Transactions on Aerospace and Electronic Systems, 2022, 58(2): 781–796. doi: 10.1109/TAES.2021.3111787.
    [3] BRASHEARS T R. Achieving ⪆99% link uptime on a fleet of 100G space laser inter-satellite links in LEO[C]. SPIE 12877, Free-Space Laser Communications XXXVI, San Francisco, CA, USA, 2024: 1287702. doi: 10.1117/12.3005057.
    [4] 许维翰, 周林杰, 陈建平. 硅基波导集成光学相控阵芯片—设计难点与突破(特邀)[J]. 光学学报, 2024, 44(15): 1513026. doi: 10.3788/AOS241072.

    XU Weihan, ZHOU Linjie, and CHEN Jianping. Silicon-based waveguide integrated optical phased array chips for LiDAR: Design challenges and breakthroughs (invited)[J]. Acta Optica Sinica, 2024, 44(15): 1513026. doi: 10.3788/AOS241072.
    [5] LI Jie, LUO Ming, HU Leilei, et al. Real-time 200Gbps coherent PON based on silicon photonic integrated transceiver[C]. 2022 Asia Communications and Photonics Conference, Shenzhen, China, 2022: 957–960. doi: 10.1109/ACP55869.2022.10088953.
    [6] HE Jingwen, DONG Tao, and XU Yue. Review of photonic integrated optical phased arrays for space optical communication[J]. IEEE Access, 2020, 8: 188284–188298. doi: 10.1109/ACCESS.2020.3030627.
    [7] XUE Wenli, LIU Yichen, ZHU Xingwang, et al. A high-performance 10 mm diameter MEMS fast steering mirror with integrated piezoresistive angle sensors for laser inter-satellite links[J]. Microsystems & Nanoengineering, 2025, 11(1): 75. doi: 10.1038/s41378-025-00935-1.
    [8] WEN Zhidong, HOU Yu, CHEN Yang, et al. Improved acquisition performance of inter-satellite laser communication system through non-mechanical adaptive beam control[J]. Optics and Lasers in Engineering, 2025, 194: 109217. doi: 10.1016/j.optlaseng.2025.109217.
    [9] 李锐, 林宝军, 刘迎春, 等. 激光星间链路发展综述: 现状、趋势、展望[J]. 红外与激光工程, 2023, 52(3): 20220393. doi: 10.3788/IRLA20220393.

    LI Rui, LIN Baojun, LIU Yingchun, et al. Review on laser intersatellite link: Current status, trends, and prospects[J]. Infrared and Laser Engineering, 2023, 52(3): 20220393. doi: 10.3788/IRLA20220393.
    [10] GUELMAN M, KOGAN A, KAZARIAN A, et al. Acquisition and pointing control for inter-satellite laser communications[J]. IEEE Transactions on Aerospace and Electronic Systems, 2004, 40(4): 1239–1248. doi: 10.1109/TAES.2004.1386877.
    [11] 侯霞, 刘哲绮, 常亦迪, 等. 卫星激光通信技术发展现状与趋势分析[J]. 中国激光, 2024, 51(11): 1101013. doi: 10.3788/CJL240448.

    HOU Xia, LIU Zheqi, CHANG Yidi, et al. Analysis on development status and trend of space laser communication technology[J]. Chinese Journal of Lasers, 2024, 51(11): 1101013. doi: 10.3788/CJL240448.
    [12] LIU Cheng, WEN Feng, and FAN Feng. Pointing, acquisition, and tracking (PAT) technology for inter-satellite laser links[C]. SPIE 13492, AOPC 2024: Laser Technology and Applications, Beijing, China, 2024: 134920C. doi: 10.1117/12.3046162.
    [13] NIELSEN T T. Pointing, acquisition, and tracking system for the free-space laser communication system SILEX[C]. SPIE 2381, Free-Space Laser Communication Technologies VII, San Jose, CA, USA, 1995. doi: 10.1117/12.207403.
    [14] FIELDS R, LUNDE C, WONG R, et al. NFIRE-to-TerraSAR-X laser communication results: Satellite pointing, disturbances, and other attributes consistent with successful performance[C].SPIE 7330, Sensors and Systems for Space Applications III, Orlando, FL, USA, 2009: 73300Q. doi: 10.1117/12.820393.
    [15] CARRASCO-CASADO A, SHIRATAMA K, TRINH P V, et al. Development of a miniaturized laser-communication terminal for small satellites[J]. Acta Astronautica, 2002, 197: 1–5. doi: 10.1016/j.actaastro.2022.05.011.
    [16] WANG Xuan, HAN Junfeng, WANG Chen, et al. Beam scanning and capture of micro laser communication terminal based on MEMS micromirrors[J]. Micromachines, 2023, 14(7): 1317. doi: 10.3390/mi14071317.
    [17] RÜDDENKLAU R, REIN F, ROUBAL C, et al. In-orbit demonstration of acquisition and tracking on OSIRIS4CubeSat[J]. Optics Express, 2024, 32(23): 41188–41200. doi: 10.1364/OE.537889.
    [18] ZHANG Furui, HAN Junfeng, and RUAN Ping. Beam pointing analysis and a novel coarse pointing assembly design in space laser communication[J]. Optik, 2019, 189: 130–147. doi: 10.1016/j.ijleo.2019.05.079.
    [19] MILLER E D, DESPENZA M, GAVRILYUK I, et al. A prototype coarse pointing mechanism for laser communication[C]. SPIE 10096, Free-Space Laser Communication and Atmospheric Propagation XXIX, San Francisco, CA, USA, 2017: 100960S. doi: 10.1117/12.2264086.
    [20] 谭立英, 吴世臣, 韩琦琦, 等. 潜望镜式卫星光通信终端的CCD粗跟踪[J]. 光学 精密工程, 2012, 20(2): 270–276. doi: 10.3788/OPE.20122002.0270.

    TAN Liying, WU Shichen, HAN Qiqi, et al. Coarse tracking of periscope-type satellite optical communication terminals[J]. Optics and Precision Engineering, 2012, 20(2): 270–276. doi: 10.3788/OPE.20122002.0270.
    [21] 张家齐, 张立中, 董科研, 等. 二次成像型库德式激光通信终端粗跟踪技术[J]. 中国光学, 2018, 11(4): 644–653. doi: 10.3788/CO.20181104.0644.

    ZHANG Jiaqi, ZHANG Lizhong, DONG Keyan, et al. Coarse tracking technology of secondary imaging Coude-type laser communication terminal[J]. Chinese Optics, 2018, 11(4): 644–653. doi: 10.3788/CO.20181104.0644.
  • 加载中
图(6) / 表(1)
计量
  • 文章访问数:  40
  • HTML全文浏览量:  22
  • PDF下载量:  8
  • 被引次数: 0
出版历程
  • 收稿日期:  2025-08-07
  • 修回日期:  2025-10-28
  • 录用日期:  2025-11-05
  • 网络出版日期:  2025-11-15

目录

    /

    返回文章
    返回