高级搜索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

面向多节串联电池组的低漏电流电压采样方法研究

郭仲杰 高宇洋 董建锋 白若楷

郭仲杰, 高宇洋, 董建锋, 白若楷. 面向多节串联电池组的低漏电流电压采样方法研究[J]. 电子与信息学报. doi: 10.11999/JEIT250733
引用本文: 郭仲杰, 高宇洋, 董建锋, 白若楷. 面向多节串联电池组的低漏电流电压采样方法研究[J]. 电子与信息学报. doi: 10.11999/JEIT250733
GUO Zhongjie, GAO Yuyang, DONG Jianfeng, BAI Ruokai. Research on Low Leakage Current Voltage Sampling Method for Multi-cell Series Battery Packs[J]. Journal of Electronics & Information Technology. doi: 10.11999/JEIT250733
Citation: GUO Zhongjie, GAO Yuyang, DONG Jianfeng, BAI Ruokai. Research on Low Leakage Current Voltage Sampling Method for Multi-cell Series Battery Packs[J]. Journal of Electronics & Information Technology. doi: 10.11999/JEIT250733

面向多节串联电池组的低漏电流电压采样方法研究

doi: 10.11999/JEIT250733 cstr: 32379.14.JEIT250733
基金项目: 国家自然科学基金面上项目(62171367),创新能力支撑计划项目(2022TD-39)
详细信息
    作者简介:

    郭仲杰:男,教授,博导,研究方向为超大规模数模混合信号集成电路设计技术

    高宇洋:男,硕士研究生,研究方向为多节串联电池组高性能监测与管理芯片设计技术

    董建锋:男,硕士研究生,研究方向为多节串联电池组高性能监测与管理芯片设计技术

    白若楷:男,硕士研究生,研究方向为多节串联电池组高性能监测与管理芯片设计技术

    通讯作者:

    郭仲杰 zjguo@xaut.edu.cn

  • 中图分类号: TN47

Research on Low Leakage Current Voltage Sampling Method for Multi-cell Series Battery Packs

Funds: The National Natural Science Foundation of China (62171367), Shaanxi Innovation Capability Support Project (2022TD-39)
  • 摘要: 针对多节串联电池组采样电路存在通道漏电流导致各节电池电压不一致和影响采样精度的问题,本文提出了一种应用于14节串联锂电池的低漏电流电池电压采样方法。通过分析漏电流的产生机制,采用运放隔离有源驱动技术,减小各节电池的通道漏电流,同时为了减小高压MOSFET带来的面积开销,改进了高压域运算放大器。基于0.35 μm高压BCD(Bipolar CMOS DMOS)工艺对电路进行了详细设计和完整性能验证,结果表明,所设计的电池电压采样电路版图面积仅为3.105×0.638 mm2,在不同的温度和工艺角组合下,最大通道漏电流低至48.9 pA。在全面的PVT(Process Voltage Temperature)验证下,电池电压采样最大测量误差小于1.25 mV。该方法将采样过程对电池电压不一致性的影响从18.56%降低至2.122 ppm,为高可靠高精度多节串联电池管理系统提供了有效的解决方案。
  • 图  1  传统电阻式电压采样电路

    图  2  各节电池工作电流示意图

    图  3  各节电池电压不一致性示意图

    图  4  应用于14节串联锂电池组电压采样电路架构图

    图  5  第1节电池电压采样电路

    图  6  第2至13节电池电压采样电路

    图  7  第14节电池电压采样电路

    图  8  运算放大器OP2

    图  9  整体电池电压采样电路图

    图  10  电池电压采样电路整体版图

    图  11  运算放大器OP2频率响应Bode图

    图  12  各节电池在PVT下通道漏电流

    图  13  (a)单节锂电池电压为2.5 V时通道漏电流 (b)单节锂电池电压为4.2 V时通道漏电流

    图  14  第1节电池电压隔离前后不一致性对比

    图  15  第1节电池电压采样测量误差

    图  16  第2节电池电压采样测量误差

    图  17  第14节电池电压采样测量误差

    图  18  Monte Carlo仿真结果

    图  19  校准前后误差对比

    表  1  文献对比

    [18] [20] [21] [22] [23] [25] 本文
    工艺(µm) 0.18 0.18 0.18 0.18 0.18 0.35
    电池节数 16 4-7 3 17 7 16 14
    通道漏电流补偿 电流镜
    钳位反馈型
    电流镜
    钳位反馈型
    运算放大器
    钳位反馈型
    运算放大器
    钳位反馈型
    运放隔离
    有源驱动型
    最大通道漏电流 16.25 uA 58 nA 20.34 nA 30 nA 30 nA 48.9 pA
    最大测量误差(mV) ±0.21 ±2 ±1.92 ±2.8 ±1.25
    版图面积(mm2) 3.245×3.112 0.95×0.82 2.92×3.23 3.105×0.638
    数据类型 S T T T S T S
    *T表示数据类型为测试数据,S表示数据类型为仿真数据
    下载: 导出CSV
  • [1] NIU Huizhe, ZHANG Nan, LU Ying, et al. Strategies toward the development of high-energy-density lithium batteries[J]. Journal of Energy Storage, 2024, 88: 111666. doi: 10.1016/j.est.2024.111666.
    [2] MALIK G R, REDDY K V T, REDDY Y P K, et al. Future of energy storage: Advancements in lithium-ion batteries and hybrid vehicle technologies[C]. 2024 7th International Conference on Circuit Power and Computing Technologies, Kollam, India, 2024: 1887–1892. doi: 10.1109/ICCPCT61902.2024.10672664.
    [3] LEI Yu, XU Lulu, CHAN Qingnian, et al. Recent advances in separator design for lithium metal batteries without dendrite formation: Implications for electric vehicles[J]. eTransportation, 2024, 20: 100330. doi: 10.1016/j.etran.2024.100330.
    [4] TIMILSINA L, BADR P R, HOANG P H, et al. Battery degradation in electric and hybrid electric vehicles: A survey study[J]. IEEE Access, 2023, 11: 42431–42462. doi: 10.1109/ACCESS.2023.3271287.
    [5] AKYILDIZ A, ERGUN B E, UZUN E, et al. Optimum selection of lithium iron phosphate battery cells for electric vehicles[J]. IEEE Access, 2025, 13: 55070–55080. doi: 10.1109/ACCESS.2025.3553081.
    [6] PESARAN A A. Lithium-ion battery technologies for electric vehicles: Progress and challenges[J]. IEEE Electrification Magazine, 2023, 11(2): 35–43. doi: 10.1109/MELE.2023.3264919.
    [7] LI Qingwei and XUE Wenli. A review of feature extraction toward health state estimation of lithium-ion batteries[J]. Journal of Energy Storage, 2025, 12: 115453. doi: 10.1016/j.est.2025.115453.
    [8] CUI Xiangming, WANG Jingzhao, SUN Shiyi, et al. Safety hazards of lithium metal batteries: From the perspective of lithium dendrites and thermal runaway[J]. Energy & Fuels, 2025, 39(16): 7665–7690. doi: 10.1021/acs.energyfuels.5c00728.
    [9] PING Ping, REN Xiantong, KONG Depeng, et al. Multi-scale thermal runaway analysis of sodium-ion batteries and comparative safety assessment with lithium-ion batteries[J]. Composites Part B: Engineering, 2025, 302: 112532. doi: 10.1016/j.compositesb.2025.112532.
    [10] YIN Deyou, NI Jimin, SHI Xiuyong, et al. Dynamic overcharge performance and mechanism of lithium-ion batteries during high-temperature calendar aging[J]. ACS Applied Energy Materials, 2025, 8(6): 3491–3499. doi: 10.1021/acsaem.4c03015.
    [11] LIU Zijun, HAN Kuihua, ZHANG Qiang, et al. Thermal safety focus and early warning of lithium-ion batteries: A systematic review[J]. Journal of Energy Storage, 2025, 115: 115944. doi: 10.1016/j.est.2025.115944.
    [12] RAGCHAA B, WU Liji, and ZHANG Xiangmin. A design of fault-tolerant battery monitoring IC for electric vehicles complying with ISO 26262[J]. IEEE Open Journal of Circuits and Systems, 2024, 5: 166–177. doi: 10.1109/OJCAS.2024.3391829.
    [13] VULLIGADDALA V B, VERNEKAR S, SINGAMLA S, et al. A 7-cell, stackable, Li-ion monitoring and active/passive balancing IC with in-built cell balancing switches for electric and hybrid vehicles[J]. IEEE Transactions on Industrial Informatics, 2020, 16(5): 3335–3344. doi: 10.1109/TII.2019.2953939.
    [14] YUE Tai, WU Liji, ZHANG Xiangmin, et al. High-precision voltage measurement IP core for battery management SoC of electric vehicles[C]. 2014 12th IEEE International Conference on Solid-State and Integrated Circuit Technology (ICSICT), Guilin, China, 2014: 1–3. doi: 10.1109/ICSICT.2014.7021570.
    [15] CHEN Zhijian, WU Xinyi, LI Bin, et al. A novel voltage protection method for multi-cell lithium-ion battery protection IC[J]. Journal of Physics: Conference Series, 2022, 2313(1): 012014. doi: 10.1088/1742-6596/2313/1/012014.
    [16] WU Qi and WU Jiangfeng. High precision voltage sampling circuit for battery management system[C]. 2024 IEEE 7th Advanced Information Technology, Electronic and Automation Control Conference (IAEAC), Chongqing, China, 2024: 713–717. doi: 10.1109/IAEAC59436.2024.10503982.
    [17] WANG Xiaofei, ZHANG Hong, ZHANG Jianrong, et al. A multi-cell battery pack monitoring chip based on 0.35-µm BCD technology for electric vehicles[J]. IEICE Electronics Express, 2015, 12(12): 20150367. doi: 10.1587/elex.12.20150367.
    [18] HAO Yunqiang, YI Dongbai, ZHANG Xiaowei, et al. A power management IC used for monitoring and protection of Li-ion battery packs[J]. Journal of Sensors, 2021, 2021: 6611648. doi: 10.1155/2021/6611648.
    [19] SHI Qianqian, TANG Wei, and LV Qiushuang. A high precision voltage detection circuit for multiple lithium batteries[C]. 2022 7th International Conference on Integrated Circuits and Microsystems (ICICM), Xi'an, China, 2022: 60–66. doi: 10.1109/ICICM56102.2022.10011305.
    [20] WU Kaikai, WANG Hongyi, CHEN Chen, et al. Battery voltage transfer method for multi-cells Li-ion battery pack protection chips[J]. Analog Integrated Circuits and Signal Processing, 2022, 111(1): 13–24. doi: 10.1007/s10470-021-01836-9.
    [21] WU Kaikai, WANG Hongyi, CHEN Chen, et al. Improved voltage transfer method for lithium battery string management chip[J]. IET Circuits, Devices & Systems, 2021, 15(7): 649–656. doi: 10.1049/cds2.12060.
    [22] YOU Yong, ZHU Guangqian, LI Yongyuan, et al. 17-Cell battery monitoring analog front end with high sampling accuracy for battery pack applications[J]. Microelectronics Journal, 2024, 151: 106327. doi: 10.1016/j.mejo.2024.106327.
    [23] LI Qing, GUO Zhongjie, CHEN Hao, et al. High precision voltage monitoring technology for multi-cell battery management system[C]. 2020 IEEE 15th International Conference on Solid-State & Integrated Circuit Technology, Kunming, China, 2020. doi: 10.1109/ICSICT49897.2020.9278338.
    [24] 郭仲杰, 巩成军, 陈晅, 等. 应用于电池管理芯片中多通道电压采样不一致性校准方法[P]. 中国, 202410631286.7, 2024.

    GUO Zhongjie, GONG Chengjun, CHEN Xuan, et al. Multi-channel voltage sampling inconsistency calibration method applied to battery management chip[P]. CN, 202410631286.7, 2024.
    [25] http://www.ti.com.cn/product/cn/BQ79616-Q1, 2025. (查阅网上资料,请补充完整本条文献信息,请确认).
  • 加载中
图(19) / 表(1)
计量
  • 文章访问数:  34
  • HTML全文浏览量:  19
  • PDF下载量:  3
  • 被引次数: 0
出版历程
  • 修回日期:  2025-12-29
  • 录用日期:  2025-12-29
  • 网络出版日期:  2026-01-08

目录

    /

    返回文章
    返回