高级搜索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

FPVA生物芯片下考虑单元复用中试剂种类差异的组件布局算法

许彦博 朱予涵 黄兴 刘耿耿

许彦博, 朱予涵, 黄兴, 刘耿耿. FPVA生物芯片下考虑单元复用中试剂种类差异的组件布局算法[J]. 电子与信息学报. doi: 10.11999/JEIT250731
引用本文: 许彦博, 朱予涵, 黄兴, 刘耿耿. FPVA生物芯片下考虑单元复用中试剂种类差异的组件布局算法[J]. 电子与信息学报. doi: 10.11999/JEIT250731
XU Yanbo, ZHU Yuhan, HUANG Xing, LIU Genggeng. Component Placement Algorithm Considering Reagent Type Differences in Cell Reuse for FPVA Biochips[J]. Journal of Electronics & Information Technology. doi: 10.11999/JEIT250731
Citation: XU Yanbo, ZHU Yuhan, HUANG Xing, LIU Genggeng. Component Placement Algorithm Considering Reagent Type Differences in Cell Reuse for FPVA Biochips[J]. Journal of Electronics & Information Technology. doi: 10.11999/JEIT250731

FPVA生物芯片下考虑单元复用中试剂种类差异的组件布局算法

doi: 10.11999/JEIT250731 cstr: 32379.14.JEIT250731
基金项目: 国家自然科学基金(62372109, 62572396),福建省杰出青年科学基金(2023J06017)
详细信息
    作者简介:

    许彦博:男,硕士生,研究方向为微流体生物芯片设计自动化

    朱予涵:女,博士生,研究方向为微流体生物芯片设计自动化

    黄兴:男,博士,教授,研究方向为微流体生物芯片及超大规模集成电路设计自动化

    刘耿耿:男,博士,教授,研究方向为微流体生物芯片及超大规模集成电路设计自动化

    通讯作者:

    刘耿耿 liugenggeng@fzu.edu.cn

  • 中图分类号: TN402; TP391.41

Component Placement Algorithm Considering Reagent Type Differences in Cell Reuse for FPVA Biochips

Funds: The National Natural Science Foundation of China(62372109, 62572396), The Fujian Science Fund for Distinguished Young Scholars(2023J06017)
  • 摘要: 作为新型流式微流控生物芯片,完全可编程阀门阵列(FPVA)生物芯片拥有出色的灵活性和可编程性,能够满足多种复杂的实验需求。而作为架构综合的重要阶段,FPVA组件布局会影响包括生物测定完成时间、流体运输路径总长度和交叉污染程度在内的多个性能指标。此外,单元复用是FPVA芯片灵活性和可编程性的重要表现。然而,现有的FPVA组件布局相关研究工作均没有考虑单元复用过程中试剂种类的差异对这些重要指标的影响。为此,该文聚焦于FPVA组件布局过程中单元复用的试剂种类差异问题,提出了基于深度强化学习的考虑单元复用中试剂种类差异的FPVA组件布局算法。首先,通过考虑试剂之间的差异和组件重叠对交叉污染的影响,设计了单元复用复杂度和含有相同试剂组件平均距离两个指标,分别用于量化组件布局方案中各个单元的单元复用复杂程度和含有相同试剂组件的聚集程度。其次,引入了包括组件布局区域限制约束和并发组件不重叠约束在内的约束条件,这些约束确保组件布局方案的合法性。最后,通过设计奖励函数最小化单元复用复杂度和减小含有相同种类试剂的组件间距离,从而达成最小化最终组件布局方案的交叉污染程度、流体运输路径总长度和生物测定完成时间的目标。通过仿真实验,对所提出的组件布局算法进行了评估。实验结果表明,所提算法能够得到高质量的考虑单元复用中试剂种类差异的FPVA组件布局方案,验证了所提算法的有效性。
  • 图  1  含有相同试剂的两个组件间距离对流路径长度的影响

    图  2  FPVA生物芯片建模[19]

    图  3  单元复用发复杂度计算过程示例

    图  4  组件移动方向示意图

    图  5  DDQN训练过程

    图  6  本文算法与文献[19]的RAD对比图

    表  1  测试用例具体信息

    测试用例试剂种类数输入流体数输入通道分配输出流体数混合操作数FPVA尺寸
    PCR382-2-4178×8
    IVD14123×4668×8
    IVD26182-2-3×3-59910×10
    ProteinSplit15141-2-3-4-421210×10
    ProteinSplit211321-2×4-3×3-4-5-542313×13
    Synthetic1252-3148×8
    Synthetic25131-1-3-3-511210×10
    Synthetic36181-2-3-3-4-511712×12
    Synthetic48221-2-3×5-412113×13
    Synthetic59271-1-2-2-3-3-4-5-612613×13
    下载: 导出CSV

    表  2  本文算法与文献[19]中算法的对比结果

    测试用例总单元复用复杂度生物测定完成时间(s)流体运输路径总长度(mm)
    文献[19]本文算法优化/%文献[19]本文算法优化/%文献[19]本文算法优化/%
    PCR8.53.756.517.016.34.130286.7
    IVD115.09.040.04.54.34.446436.5
    IVD246.032.030.45.44.99.3827113.4
    ProteinSplit1108.4104.04.130.229.91.083803.6
    ProteinSplit22403.91317.745.238.437.62.122619812.4
    Synthetic14.01.075.012.812.70.8282510.7
    Synthetic273.265.210.921.220.91.478727.7
    Synthetic3187.0135.627.525.725.21.912711211.8
    Synthetic4287.9179.337.730.429.62.61991952.0
    Synthetic5502.9429.514.630.330.10.724520217.6
    平均34.22.89.2
    下载: 导出CSV

    表  3  本文算法与文献[24]中算法的对比结果

    测试用例总单元复用复杂度生物测定完成时间(s)流体运输路径总长度(mm)
    文献[24]本文算法优化/%文献[24]本文算法优化/%文献[24]本文算法优化/%
    PCR8.23.754.916.816.33.029283.4
    IVD114.59.037.94.44.32.345434.4
    IVD244.532.028.15.34.97.5807111.3
    ProteinSplit1107.0104.02.830.029.90.382802.4
    ProteinSplit22380.01317.744.638.237.61.622419811.6
    Synthetic13.91.074.412.712.70.027257.4
    Synthetic272.065.29.421.020.90.577726.5
    Synthetic3184.0135.626.325.525.21.212511210.4
    Synthetic4284.0179.336.930.229.62.01971951.0
    Synthetic5498.0429.513.830.230.10.324220216.5
    平均32.91.97.5
    下载: 导出CSV
  • [1] MINHASS W H, POP P, MADSEN J, et al. Architectural synthesis of flow-based microfluidic large-scale integration biochips[C]. Proceedings of the International Conference on Compilers, Architectures and Synthesis for Embedded Systems, Tampere, Finland, 2012: 181–190. doi: 10.1145/2380403.2380437.
    [2] MINHASS W H, POP P, and MADSEN J. Synthesis of biochemical applications on flow-based microfluidic biochips using constraint programming[C]. Proceedings of the Symposium on Design, Test, Integration and Packaging of MEMS/MOEMS, Cannes, France, 2012: 37–41. (查阅网上资料, 未找到doi信息, 请确认).
    [3] 朱予涵, 刘博文, 黄兴, 等. 完全可编程阀门阵列生物芯片下容错导向的高阶综合算法[J]. 电子与信息学报, 2024, 46(11): 4141–4150. doi: 10.11999/JEIT240049.

    ZHU Yuhan, LIU Bowen, HUANG Xing, et al. Fault-tolerance-oriented high-level synthesis algorithm for fully programmable valve array biochips[J]. Journal of Electronics & Information Technology, 2024, 46(11): 4141–4150. doi: 10.11999/JEIT240049.
    [4] MCDANIEL J, PARKER B, and BRISK P. Simulated annealing-based placement for microfluidic large scale integration (mLSI) chips[C]. Proceedings of the 22nd International Conference on Very Large Scale Integration, Playa del Carmen, Mexico, 2014: 1–6. (查阅网上资料, 未找到doi信息, 请确认).
    [5] HU Kai, HO T Y, and CHAKRABARTY K. Wash optimization and analysis for cross-contamination removal under physical constraints in flow-based microfluidic biochips[J]. IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems, 2016, 35(4): 559–572. doi: 10.1109/TCAD.2015.2488485.
    [6] GRIMMER A, WANG Qin, YAO Hailong, et al. Close-to-optimal placement and routing for continuous-flow microfluidic biochips[C]. Proceedings of the 22nd Asia and South Pacific Design Automation Conference, Chiba, Japan, 2017: 530–535. doi: 10.1109/ASPDAC.2017.7858377.
    [7] CRITES B, KONG K, and BRISK P. Diagonal component expansion for flow-layer placement of flow-based microfluidic biochips[J]. ACM Transactions on Embedded Computing Systems, 2017, 16(5s): 126. doi: 10.1145/3126529.
    [8] CHEN Zhisheng, HUANG Xing, GUO Wenzhong, et al. Physical synthesis of flow-based microfluidic biochips considering distributed channel storage[C]. Proceedings of the Design, Automation & Test in Europe Conference & Exhibition, Florence, Italy, 2019: 1525–1530. doi: 10.23919/DATE.2019.8715269.
    [9] 王钦. 微流控生物芯片流体与控制协同物理设计算法研究[D]. [博士论文], 清华大学, 2018. doi: 10.27266/d.cnki.gqhau.2018.000723.

    WANG Qin. Research on control-fluidic physical CoDesign algorithm for microfluidic biochips[D]. [Ph. D. dissertation], Tsinghua University, 2018. doi: 10.27266/d.cnki.gqhau.2018.000723.
    [10] 朱予涵, 黄鸿斌, 林泓星, 等. 连续微流控生物芯片下基于序列对的流层物理设计算法[J]. 计算机辅助设计与图形学学报, 2022, 34(4): 535–544. doi: 10.3724/SP.J.1089.2022.19445.

    ZHU Yuhan, HUANG Hongbin, LIN Hongxing, et al. Sequence-pair-based flow-layer physical design algorithm for continuous-flow microfluidic biochips[J]. Journal of Computer-Aided Design & Computer Graphics, 2022, 34(4): 535–544. doi: 10.3724/SP.J.1089.2022.19445.
    [11] 刘耿耿, 叶正阳, 朱予涵, 等. 连续微流控生物芯片下一种多阶段启发式的流层物理协同设计算法[J]. 电子与信息学报, 2023, 45(9): 3401–3409. doi: 10.11999/JEIT221155.

    LIU Genggeng, YE Zhengyang, ZHU Yuhan, et al. A multi-stage heuristic flow-layer physical codesign algorithm for continuous-flow microfluidic biochips[J]. Journal of Electronics & Information Technology, 2023, 45(9): 3401–3409. doi: 10.11999/JEIT221155.
    [12] FIDALGO L M and MAERKL S J. A software-programmable microfluidic device for automated biology[J]. Lab on a Chip, 2011, 11(9): 1612–1619. doi: 10.1039/C0LC00537A.
    [13] TSENG T M, LI Bing, HO T Y, et al. Reliability-aware synthesis for flow-based microfluidic biochips by dynamic-device mapping[C]. Proceedings of the 52nd ACM/EDAC/IEEE Design Automation Conference, San Francisco, USA, 2015: 1–6. doi: 10.1145/2744769.2744899.
    [14] TSENG T M, LI Bing, LI Mengchu, et al. Reliability-aware synthesis with dynamic device mapping and fluid routing for flow-based microfluidic biochips[J]. IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems, 2016, 35(12): 1981–1994. doi: 10.1109/TCAD.2016.2547902.
    [15] CHOUDHARY G, PAL S, KUNDU D, et al. Transport-free module binding for sample preparation using microfluidic fully programmable valve arrays[C]. Proceedings of the Design, Automation & Test in Europe Conference & Exhibition, Grenoble, France, 2020: 1335–1338. doi: 10.23919/DATE48585.2020.9116370.
    [16] DATTA P, CHAKRABORTY A, and PAL R K. Design optimization for programmable microfluidic devices integrating contamination removal and capacity-wastage-aware washing[J]. IETE Journal of Research, 2020, 66(6): 781–796. doi: 10.1080/03772063.2020.1811784.
    [17] KUNDU D, GIRI J, MARUYAMA S, et al. Fluid-to-cell assignment and fluid loading on programmable microfluidic devices for bioprotocol execution[J]. Integration, 2021, 78: 95–109. doi: 10.1016/j.vlsi.2020.12.004.
    [18] YU H C, LIN Y H, CHEN Zhiyang, et al. Contamination-aware synthesis for programmable microfluidic devices[J]. IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems, 2022, 41(11): 5016–5029. doi: 10.1109/TCAD.2021.3134892.
    [19] LIU Genggeng, ZHU Yuhan, GUO Wenzhong, et al. Fault-tolerance-oriented physical design for fully programmable valve array biochips[C]. Proceedings of the 60th ACM/IEEE Design Automation Conference, San Francisco, USA, 2023: 1–6. doi: 10.1109/DAC56929.2023.10247720.
    [20] KUMAR M, KHAN A K, ROY S, et al. Accelerating fluid loading in sample preparation with fully programmable valve arrays[C]. Proceedings of the 37th International Conference on VLSI Design and 23rd International Conference on Embedded Systems (VLSID), Kolkata, India, 2024: 402–407. doi: 10.1109/VLSID60093.2024.00073.
    [21] ZHU Yuhan, LIU Genggeng, GUO Wenzhong, et al. FTCD: Fault-tolerant co-design of flow and control layers for fully programmable valve array biochips[J]. IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems, 2025, 44(7): 2669–2682. doi: 10.1109/TCAD.2025.3525615.
    [22] CAI Huayang, LIU Genggeng, GUO Wenzhong, et al. Adaptive control-logic routing for fully programmable valve array biochips using deep reinforcement learning[C]. Proceedings of the 29th Asia and South Pacific Design Automation Conference, Incheon, Korea, 2024: 564–569. doi: 10.1109/ASP-DAC58780.2024.10473962.
    [23] HUANG Xing, CAI Huayang, GUO Wenzhong, et al. Control-logic synthesis of fully programmable valve array using reinforcement learning[J]. IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems, 2024, 43(1): 277–290. doi: 10.1109/TCAD.2023.3309740.
    [24] MNIH V, KAVUKCUOGLU K, SILVER D, et al. Playing Atari with deep reinforcement learning[J]. arXiv preprint arXiv: 1312.5602, 2013. doi: 10.48550/arXiv.1312.5602. (查阅网上资料,不确定本条文献的格式和类型,请确认).
  • 加载中
图(6) / 表(3)
计量
  • 文章访问数:  10
  • HTML全文浏览量:  6
  • PDF下载量:  1
  • 被引次数: 0
出版历程
  • 修回日期:  2026-01-12
  • 录用日期:  2026-01-12
  • 网络出版日期:  2026-01-27

目录

    /

    返回文章
    返回