高级搜索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

针对完整性攻击的信息物理系统双通道联合编码检测

莫小磊 曾维鑫 富佳伟 窦克勤 王言伟 孙希明 林思达 隋天举

莫小磊, 曾维鑫, 富佳伟, 窦克勤, 王言伟, 孙希明, 林思达, 隋天举. 针对完整性攻击的信息物理系统双通道联合编码检测[J]. 电子与信息学报. doi: 10.11999/JEIT250729
引用本文: 莫小磊, 曾维鑫, 富佳伟, 窦克勤, 王言伟, 孙希明, 林思达, 隋天举. 针对完整性攻击的信息物理系统双通道联合编码检测[J]. 电子与信息学报. doi: 10.11999/JEIT250729
MO Xiaolei, ZENG Weixin, FU Jiawei, DOU Keqin, WANG Yanwei, SUN Ximing, LIN Sida, SUI Tianju. Two-channel joint coding detection for cyber-physical systems against integrity attacks[J]. Journal of Electronics & Information Technology. doi: 10.11999/JEIT250729
Citation: MO Xiaolei, ZENG Weixin, FU Jiawei, DOU Keqin, WANG Yanwei, SUN Ximing, LIN Sida, SUI Tianju. Two-channel joint coding detection for cyber-physical systems against integrity attacks[J]. Journal of Electronics & Information Technology. doi: 10.11999/JEIT250729

针对完整性攻击的信息物理系统双通道联合编码检测

doi: 10.11999/JEIT250729 cstr: 32379.14.JEIT250729
基金项目: 国家自然科学基金(62322306,62173057),航空科学基金(2022Z018063001),KGJ基础科研项目(JCKY2023110C080),大连理工大学重大项目科研专题(DUT24ZD412)
详细信息
    作者简介:

    莫小磊:男,硕士生,研究方向为信息物理系统攻击检测、安全状态估计

    曾维鑫:男,硕士生,研究方向为信息物理系统攻击检测、安全状态估计

    富佳伟:男,博士,高级工程师,研究方向为飞机总体设计

    窦克勤:男,博士在读,研究员,研究方向为工业信息安全

    王言伟:男,博士在读,教授级高级工程师,研究方向为飞机总体设计、机载智能信息系统

    孙希明:男,博士,教授,研究方向为切换系统控制、工业网络智能控制与优化

    林思达:男,博士,副教授,研究方向为网络化控制系统优化

    隋天举:男,博士,教授,研究方向为系统安全防护和故障诊断、工业互联网和网络化控制系统

    通讯作者:

    富佳伟 fjw15210591734@163.com

  • 中图分类号: TP13; TP309

Two-channel joint coding detection for cyber-physical systems against integrity attacks

Funds: National Natural Science Foundation of China(62322306,62173057), Aeronautical Science Foundation of China(2022Z018063001), KGJ Basic Research and Development Program(JCKY2023110C080), Dalian University of Technology Major Project Research Topics(DUT24ZD412)
  • 摘要: 信息物理系统(Cyber-Physical System, CPS)完整性攻击针对系统数据流发起攻击,破坏输入输出数据一致性,由于其攻击方式多变、隐蔽性强的特性,较其他CPS攻击在检测及防护上更为困难。为此,本文提出了一种控制-输出双通道的数据加性-乘性联合编码检测方案,旨在检测完整性攻击并在三种典型攻击上进行验证,包括控制通道偏置攻击、输出通道重放攻击以及双通道隐蔽攻击。完整性攻击通过部分或全面系统信息的获取及掌控可使卡方检测器检测值小于阈值,从而实现对CPS系统“隐形”。为此,本文方案创新性地在通道两侧布置加性正负水印对以及乘性编码/解码矩阵对,未知信号及部件的引入为攻击者带来了信息不确定性,使残差统计特性偏离其期望数值。此外,水印对与矩阵对之间通过不同机制实现了解耦,其正负或互逆形式使得无攻击时不影响系统的控制性能,并且以时变形式防止攻击者对其重构。最后,通过计算推导出引入本文方案后三种攻击前后残差统计特性的变化,并以飞行器飞行轨迹仿真为例,说明方案的有效性和先进性。
  • 图  1  针对完整性攻击的综合检测方案

    图  2  偏置攻击检测结果对比

    图  3  重放攻击检测结果对比

    图  4  隐蔽攻击检测结果对比

  • [1] TEIXEIRA A, PÉREZ D, SANDBERG H, et al. Attack models and scenarios for networked control systems[C]. Proceedings of the 1st International Conference on High Confidence Networked Systems, Beijing, China, 2012: 55–64. doi: 10.1145/2185505.2185515.
    [2] 方崇荣. 信息物理系统中数据完整性攻击的检测与防御研究[D]. [博士论文], 浙江大学, 2021. doi: 10.27461/d.cnki.gzjdx.2021.001222.

    FANG Chongrong. Research on detection and defense of data integrity attacks in cyber-physical systems[D]. [Ph. D. dissertation], Zhejiang University, 2021. doi: 10.27461/d.cnki.gzjdx.2021.001222.
    [3] CÁRDENAS A A, AMIN S, LIN Z Y, et al. Attacks against process control systems: Risk assessment, detection, and response[C]. Proceedings of the 6th ACM Symposium on Information, Computer and Communications Security, Hong Kong, China, 2011: 355–366. doi: 10.1145/1966913.1966959.
    [4] 叶丹, 靳凯净, 张天予. 网络攻击下的信息物理系统安全性研究综述[J]. 控制与决策, 2023, 38(8): 2243–2252. doi: 10.13195/j.kzyjc.2023.0386.

    YE Dan, JIN Kaijing, and ZHANG Tianyu. A survey on security of cyber-physical systems under network attacks[J]. Control and Decision, 2023, 38(8): 2243–2252. doi: 10.13195/j.kzyjc.2023.0386.
    [5] HUANG Xin, LI Jian, and SU Qingyu. An observer with cooperative interaction structure for biasing attack detection and secure control[J]. IEEE Transactions on Systems, Man, and Cybernetics: Systems, 2023, 53(4): 2543–2553. doi: 10.1109/TSMC.2022.3213516.
    [6] 赵华. 工业控制系统异常检测算法研究[D]. [硕士论文], 冶金自动化研究设计院, 2013. doi: 10.7666/d.Y2362236.

    ZHAO Hua. Research on anomaly detection algorithm for industrial control systems[D]. [Master dissertation], Automation Research and Design Institute of Metallurgical Industry, 2013. doi: 10.7666/d.Y2362236.
    [7] MO Yilin and SINOPOLI B. Secure control against replay attacks[C]. Proceedings of 2009 47th Annual Allerton Conference on Communication, Control, and Computing (Allerton), Monticello, USA, 2009: 911–918. doi: 10.1109/ALLERTON.2009.5394956.
    [8] FERRARI R M G and TEIXEIRA A M H. Detection and isolation of replay attacks through sensor watermarking[J]. IFAC-PapersOnLine, 2017, 50(1): 7363–7368. doi: 10.1016/j.ifacol.2017.08.1502.
    [9] FANG Chongrong, QI Yifei, CHENG Peng, et al. Optimal periodic watermarking schedule for replay attack detection in cyber–physical systems[J]. Automatica, 2020, 112: 108698. doi: 10.1016/j.automatica.2019.108698.
    [10] 杜大军, 张竞帆, 张长达, 等. 动态水印攻击检测方法的鲁棒性研究[J]. 自动化学报, 2023, 49(12): 2557–2568. doi: 10.16383/j.aas.c200614.

    DU Dajun, ZHANG Jingfan, ZHANG Changda, et al. Robustness of dynamic-watermarking attack-detection method[J]. Acta Automatica Sinica, 2023, 49(12): 2557–2568. doi: 10.16383/j.aas.c200614.
    [11] MIAO Fei, ZHU Quanyan, PAJIC M, et al. Coding schemes for securing cyber-physical systems against stealthy data injection attacks[J]. IEEE Transactions on Control of Network Systems, 2017, 4(1): 106–117. doi: 10.1109/TCNS.2016.2573039.
    [12] YE Dan, ZHANG Tianyu, and GUO Ge. Stochastic coding detection scheme in cyber-physical systems against replay attack[J]. Information Sciences, 2019, 481: 432–444. doi: 10.1016/j.ins.2018.12.091.
    [13] 张正道, 杨佳佳, 谢林柏. 基于辅助信息补偿和控制信号编码的重放攻击检测方法[J]. 自动化学报, 2023, 49(7): 1508–1518. doi: 10.16383/j.aas.c210092.

    ZHANG Zhengdao, YANG Jiajia, and XIE Linbo. Replay attack detection method based on auxiliary information compensation and control signal coding[J]. Acta Automatica Sinica, 2023, 49(7): 1508–1518. doi: 10.16383/j.aas.c210092.
    [14] HOEHN A and ZHANG Ping. Detection of covert attacks and zero dynamics attacks in cyber-physical systems[C]. Proceedings of 2016 American Control Conference (ACC), Boston, USA, 2016: 302–307. doi: 10.1109/ACC.2016.7524932.
    [15] ATTAR M and LUCIA W. An active detection strategy based on dimensionality reduction for false data injection attacks in cyber-physical systems[J]. IEEE Transactions on Control of Network Systems, 2023, 10(4): 1844–1854. doi: 10.1109/TCNS.2023.3244103.
    [16] GRIFFIOEN P, WEERAKKODY S, and SINOPOLI B. An optimal design of a moving target defense for attack detection in control systems[C]. Proceedings of 2019 American Control Conference (ACC), Philadelphia, USA, 2019: 4527–4534. doi: 10.23919/ACC.2019.8814689.
    [17] XU Wangkun, JAIMOUKHA I M, and TENG Fei. Robust moving target defence against false data injection attacks in power grids[J]. IEEE Transactions on Information Forensics and Security, 2023, 18: 29–40. doi: 10.1109/TIFS.2022.3210864.
    [18] WANG Jiazhou, TIAN Jue, LIU Yang, et al. MMTD: Multistage moving target defense for security-enhanced D-FACTS operation[J]. IEEE Internet of Things Journal, 2023, 10(14): 12234–12247. doi: 10.1109/JIOT.2023.3245628.
    [19] ANDERSON B D O and MOORE J B. Optimal Filtering[M]. New York: Dover Publications, 2005: 307–341.
    [20] YE N, EMRAN S M, CHEN Q, et al. Multivariate statistical analysis of audit trails for host-based intrusion detection[J]. IEEE Transactions on Computers, 2002, 51(7): 810–820. doi: 10.1109/TC.2002.1017701.
    [21] KWON C, LIU Weiyi, and HWANG I. Security analysis for cyber-physical systems against stealthy deception attacks[C]. Proceedings of 2013 American Control Conference, Washington, USA, 2013: 3344–3349. doi: 10.1109/ACC.2013.6580348.
  • 加载中
图(4)
计量
  • 文章访问数:  38
  • HTML全文浏览量:  17
  • PDF下载量:  9
  • 被引次数: 0
出版历程
  • 修回日期:  2025-11-12
  • 录用日期:  2025-11-12
  • 网络出版日期:  2025-11-17

目录

    /

    返回文章
    返回