高级搜索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于微波开口双频段谐振腔的雪层厚度测试技术研究

李梦瑶 张鹏飞 冯浩 马中发

李梦瑶, 张鹏飞, 冯浩, 马中发. 基于微波开口双频段谐振腔的雪层厚度测试技术研究[J]. 电子与信息学报. doi: 10.11999/JEIT250724
引用本文: 李梦瑶, 张鹏飞, 冯浩, 马中发. 基于微波开口双频段谐振腔的雪层厚度测试技术研究[J]. 电子与信息学报. doi: 10.11999/JEIT250724
LI Mengyao, ZHANG Pengfei, FENG Hao, MA Zhongfa. Research on Snow Depth Measurement Technology Based on Dual-Band Microwave Open Resonant Cavity[J]. Journal of Electronics & Information Technology. doi: 10.11999/JEIT250724
Citation: LI Mengyao, ZHANG Pengfei, FENG Hao, MA Zhongfa. Research on Snow Depth Measurement Technology Based on Dual-Band Microwave Open Resonant Cavity[J]. Journal of Electronics & Information Technology. doi: 10.11999/JEIT250724

基于微波开口双频段谐振腔的雪层厚度测试技术研究

doi: 10.11999/JEIT250724 cstr: 32379.14.JEIT250724
详细信息
    作者简介:

    李梦瑶:女,硕士生,研究方向为微波电参数测试

    张鹏飞:男,副教授,研究方向为天线设计

    冯浩:男,硕士生,研究方向为共口径相控阵

    马中发:男,副教授,研究方向为微电路可靠性技术

    通讯作者:

    张鹏飞 zhangpf@mail.xidian.edu.cn

  • 中图分类号: TM931

Research on Snow Depth Measurement Technology Based on Dual-Band Microwave Open Resonant Cavity

  • 摘要: 能实时准确测量雪层厚度并进行预警的设备对于保护冬季长时间暴露在外界环境中的供电、通信、雷达等设备具有重要的应用价值。论文研究了基于微波矩形波导开口双腔体的雪层厚度测试方法,设计了对应的测量装置,给出了相关的构造、参数获取、数据反演策略。在此过程中,提出了基于单舱内嵌入金属隔板或频率选择表面(FSS)隔板的双腔双馈电双频段测试方法,通过大腔体低频大动态范围和小腔体高频高精度的策略结合参数相关处理算法,合理解决了大量程和高测试精度之间的矛盾。论文分析了自然降落覆盖在谐振腔开口处的不同雪层厚度对腔体的反射系数谐振频率和S参数的影响,并讨论了雪的密度、湿度对厚度测量精度的影响,比较了不同反演算法的效果,实现了1~30 mm的雪层厚度的分段测量,反演算法精度达到0.16 mm。测试精度优于1 mm。对应的技术和设备可直接或扩展用于以雪厚测试为代表的介质几何参数测试。
  • 图  1  矩形开口谐振腔

    图  2  数值计算得到的雪层厚度与谐振频率关系曲线

    图  3  加载雪层前后的电场

    图  4  随雪层厚度增加S11谐振频率与谐振谷值的变化关系

    图  5  加载雪层前后S11曲线图

    图  6  金属板隔离的双腔体雪层厚度测量模型

    图  7  FSS单元相关参数

    图  8  空气中电导率差异对FSS单元的电磁波透射性能影响

    图  9  单双腔体的雪层厚度与反射系数相关数据变化比较

    图  10  雪相对介电常数(密度)变化对金属板隔离模型的测量结果影响

    图  11  雪相对介电常数(密度)变化对FSS隔离模型的测量结果影响

    图  12  雪电导率(湿度)变化对金属板隔离模型的测量结果影响

    图  13  雪电导率(湿度)变化对FSS隔离模型的测量结果影响

    图  14  测试实物

    图  15  测试结果与仿真结果对比

    表  1  矩形开口谐振腔尺寸(mm)

    ABD1D2HH1L1P1P2
    79.3537.4431.001.0055.0034.0019.0018.009.00
    下载: 导出CSV

    表  2  金属板隔离的双腔体尺寸(mm)

    A1A2B1B2D1D2HH1H2L1L2P1P2
    98.74478.48837.44018.53231.0001.00055.00034.00018.00019.0009.00018.0009.000
    下载: 导出CSV

    表  3  FSS单元尺寸(mm)

    G1G2C1C2C3C4W1W2
    18.0000.7621.0003.0008.3009.2008.90011.600
    W3C5C6C7C8C9C10W4
    12.0006.8007.0005.0006.0007.1009.5008.900
    下载: 导出CSV

    表  4  双腔体模型的反演绝对误差(mm)

    雪层数据点 金属板隔离模型 FSS隔离模型
    算法1 算法2 算法3 算法1 算法2 算法3
    1.0 0.00 0.00 0.00 0.00 0.00 0.00
    3.7 0.07 –0.14 –0.04 0.50 0.18 0.17
    9.2 0.18 0.15 0.02 –0.07 0.15 0.03
    15.5 0.01 –0.06 –0.02 0.21 –0.18 –0.11
    21.4 –0.40 –0.34 –0.29 0.16 –0.02 –0.05
    27.8 0.07 –0.18 0.05 0.08 –0.01 –0.46
    30.0 0.00 0.00 0.00 0.00 0.00 0.00
    下载: 导出CSV

    表  5  加工模型的反演结果与绝对误差统计(mm)

    雪层数据点反演结果绝对误差
    1.01.000.00
    5.55.350.15
    15.315.43-0.13
    19.919.780.12
    27.827.640.16
    30.030.000.00
    下载: 导出CSV

    表  6  论文工作与已报道工作对比

    文献测量工具厚度(mm)测量精度(mm)
    [6]卫星1005.0
    [9]雷达85030.0
    [10]雷达30020.0
    [11]传感器33023.0
    [20]传感器40.5
    论文矩形谐振腔301.0
    下载: 导出CSV
  • [1] KOETSE M J and RIETVELD P. The impact of climate change and weather on transport: An overview of empirical findings[J]. Transportation Research Part D: Transport and Environment, 2009, 14(3): 205–221. doi: 10.1016/j.trd.2008.12.004.
    [2] LU Huapu, CHEN Mingyu, and KUANG Wenbo. The impacts of abnormal weather and natural disasters on transport and strategies for enhancing ability for disaster prevention and mitigation[J]. Transport Policy, 2020, 98: 2–9. doi: 10.1016/j.tranpol.2019.10.006.
    [3] 李海, 冯开泓, 杨文恒, 等. 机载双极化气象雷达多种降水粒子回波仿真方法研究[J]. 电子与信息学报, 2023, 45(8): 2945–2954. doi: 10.11999/JEIT220830.

    LI Hai, FENG Kaihong, YANG Wenheng, et al. Study on simulation method of precipitation particle echo of airborne dual-polarization weather radar[J]. Journal of Electronics & Information Technology, 2023, 45(8): 2945–2954. doi: 10.11999/JEIT220830.
    [4] GORZELANCZYK P. Impact of weather conditions and road type on traffic safety[J]. European Transport Studies, 2025, 2: 100042. doi: 10.1016/j.ets.2025.100042.
    [5] SHI H, SOHN B J, DYBKJÆR G, et al. Simultaneous estimation of wintertime sea ice thickness and snow depth from space-borne freeboard measurements[J]. The Cryosphere, 2020, 14(11): 3761–3783. doi: 10.5194/tc-14-3761-2020.
    [6] 王奉帅, 王华青, 贾贝. 基于北斗系统的雪层厚度测量方法[J]. 信息记录材料, 2023, 24(4): 204–206. doi: 10.16009/j.cnki.cn13-1295/tq.2023.04.061.

    WANG Fengshuai, WANG Huaqing, and JIA Bei. Snow layer thickness measurement method based on the Beidou system[J]. Information Recording Materials, 2023, 24(4): 204–206. doi: 10.16009/j.cnki.cn13-1295/tq.2023.04.061. (查阅网上资料,未找到本条文献英文信息,请确认).
    [7] JANS J F, BEERNAERT E, DE BREUCK M, et al. Sensitivity of sentinel-1 C-band SAR backscatter, polarimetry and interferometry to snow accumulation in the Alps[J]. Remote Sensing of Environment, 2025, 316: 114477. doi: 10.1016/j.rse.2024.114477.
    [8] 孙占义, 张江齐, 张鹏. 雷达技术在珠穆朗玛峰冰雪层厚度测定中的应用[J]. 物探与化探, 2006, 30(2): 179–182. doi: 10.3969/j.issn.1000-8918.2006.02.021.

    SUN Zhanyi, ZHANG Jiangqi, and ZHANG Peng. The application of radar technique to determining niveal bed thickness of Mount Qomolangma[J]. Geophysical and Geochemical Exploration, 2006, 30(2): 179–182. doi: 10.3969/j.issn.1000-8918.2006.02.021.
    [9] KANAGARATNAM P, MARKUS T, LYTLE V, et al. Ultrawideband radar measurements of thickness of snow over sea ice[J]. IEEE Transactions on Geoscience and Remote Sensing, 2007, 45(9): 2715–2724. doi: 10.1109/TGRS.2007.900673.
    [10] LIU Hai, TAKAHASHI K, and SATO M. Measurement of dielectric permittivity and thickness of snow and ice on a brackish lagoon using GPR[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2014, 7(3): 820–827. doi: 10.1109/JSTARS.2013.2266792.
    [11] RYAN W A, DOESKEN N J, and FASSNACHT S R. Evaluation of ultrasonic snow depth sensors for U. S. snow measurements[J]. Journal of Atmospheric and Oceanic Technology, 2008, 25(5): 667–684. doi: 10.1175/2007JTECHA947.1.
    [12] 王瑞, 秦建敏, 程琦, 等. 基于空气-雪层透光性差异的雪层厚度定点连续检测传感器[C]. 第十四届全国敏感元件与传感器学术会议论文集, 成都, 中国, 2016: 667–670.

    WANG Rui, QIN Jianmin, CHENG Qi, et al. The snow-thickness detection sensor based on the difference of light transmission properties between air and snow[C]. 14th Sensors and Transducers Conference of China, Chengdu, China, 2016: 667–670. (查阅网上资料, 未找到本条文献标黄部分信息, 请确认).
    [13] HERMAN K, GUDRA T, OPIELIŃSKI K, et al. A study of a parametric method for the snow reflection coefficient estimation using air-coupled ultrasonic waves[J]. Sensors, 2020, 20(15): 4267. doi: 10.3390/s20154267.
    [14] GARCÍA-MAROTO D, DURÁN L, and DE PABLO HERNÁNDEZ M Á. New approaches and error assessment to snow cover thickness and density using air temperature data at different heights[J]. Science of the Total Environment, 2024, 926: 171744. doi: 10.1016/j.scitotenv.2024.171744.
    [15] KINAR N J and POMEROY J W. Measurement of the physical properties of the snowpack[J]. Reviews of Geophysics, 2015, 53(2): 481–544. doi: 10.1002/2015RG000481.
    [16] PROKOP A, SCHIRMER M, RUB M, et al. A comparison of measurement methods: Terrestrial laser scanning, tachymetry and snow probing for the determination of the spatial snow-depth distribution on slopes[J]. Annals of Glaciology, 2008, 49: 210–216. doi: 10.3189/172756408787814726.
    [17] RODRIGUEZ-ALVAREZ N, AGUASCA A, VALENCIA E, et al. Snow thickness monitoring using GNSS measurements[J]. IEEE Geoscience and Remote Sensing Letters, 2012, 9(6): 1109–1113. doi: 10.1109/LGRS.2012.2190379.
    [18] MATZLER C. Microwave permittivity of dry snow[J]. IEEE Transactions on Geoscience and Remote Sensing, 1996, 34(2): 573–581. doi: 10.1109/36.485133.
    [19] SHAH A, NIKSAN O, and ZARIFI M H. Planar microwave sensor for localized ice and snow sensing[R]. SAE Technical Paper 2023-01-1432, 2023. doi: 10.4271/2023-01-1432.
    [20] XIE Jianbing, LI Zihan, LU Boshang, et al. A flexible CSRR-based array icing sensor with defective microstrip structure[J]. IEEE Sensors Journal, 2024, 24(12): 19934–19943. doi: 10.1109/JSEN.2024.3395435.
    [21] PRIYANKA G and RAO N. Simplified formulation for calculation of thickness of a single layered dielectric material using an open-ended rectangular waveguide[C]. 2021 12th International Conference on Computing Communication and Networking Technologies (ICCCNT), Kharagpur, India, 2021: 1–7. doi: 10.1109/ICCCNT51525.2021.9579802.
    [22] SIMON D S. Introduction to Quantum Science and Technology[M]. Cham: Springer, 2025: 697–713. doi: 10.1007/978-3-031-81315-3.
    [23] 方正新. 矩形压窄波导天线设计[D]. [硕士论文], 电子科技大学, 2009.

    FANG Zhengxin. Design of rectangular narrow-waveguide antenna[D]. [Master dissertation], University of Electronic Science and Technology of China, 2009. (查阅网上资料, 未找到本条文献英文信息, 请确认).
    [24] 胡金花, 李勇, 谭建国, 等. 玻璃纤维增强复合材料局部减薄损伤的微波无损定量检测[J]. 传感器与微系统, 2020, 39(3): 113–116. doi: 10.13873/J.1000-9787(2020)03-0113-04.

    HU Jinhua, LI Yong, TAN Jianguo, et al. Nondestructive quantitative detection of localized thickness loss in GFRP composites via microwave NDT[J]. Transducer and Microsystem Technologies, 2020, 39(3): 113–116. doi: 10.13873/J.1000-9787(2020)03-0113-04.
    [25] 鲁戈舞, 张剑, 杨洁颖, 等. 频率选择表面天线罩研究现状与发展趋势[J]. 物理学报, 2013, 62(19): 198401. doi: 10.7498/aps.62.198401.

    LU Gewu, ZHANG Jian, YANG Jieying, et al. Status and development of frequency selective surface radome[J]. Acta Physica Sinica, 2013, 62(19): 198401. doi: 10.7498/aps.62.198401.
    [26] NI Junzhe, ZHAO Wenbo, PANG Xiaoyu, et al. A fifth-order X-band frequency-selective surface with high selectivity and angular stability based on 3-D coupling slot[J]. IEEE Transactions on Antennas and Propagation, 2024, 72(7): 5743–5753. doi: 10.1109/TAP.2024.3414601.
    [27] HALLIKAINEN M, ULABY F, and ABDELRAZIK M. Dielectric properties of snow in the 3 to 37 GHz range[J]. IEEE Transactions on Antennas and Propagation, 1986, 34(11): 1329–1340. doi: 10.1109/TAP.1986.1143757.
  • 加载中
图(15) / 表(6)
计量
  • 文章访问数:  15
  • HTML全文浏览量:  5
  • PDF下载量:  3
  • 被引次数: 0
出版历程
  • 修回日期:  2025-12-12
  • 录用日期:  2025-12-12
  • 网络出版日期:  2025-12-31

目录

    /

    返回文章
    返回