高级搜索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

融合视觉的多模态通信感知一体化关键技术及原型验证

赵川斌 许伟华 林博 张腾宇 冯源 高飞飞

赵川斌, 许伟华, 林博, 张腾宇, 冯源, 高飞飞. 融合视觉的多模态通信感知一体化关键技术及原型验证[J]. 电子与信息学报. doi: 10.11999/JEIT250685
引用本文: 赵川斌, 许伟华, 林博, 张腾宇, 冯源, 高飞飞. 融合视觉的多模态通信感知一体化关键技术及原型验证[J]. 电子与信息学报. doi: 10.11999/JEIT250685
ZHAO Chuanbin, XU Weihua, LIN bo, ZHANG Tengyu, FENG Yuan, GAO Feifei. Vision Enabled Multimodal Integrated Sensing and Communications: Key Technologies and Prototype Validation[J]. Journal of Electronics & Information Technology. doi: 10.11999/JEIT250685
Citation: ZHAO Chuanbin, XU Weihua, LIN bo, ZHANG Tengyu, FENG Yuan, GAO Feifei. Vision Enabled Multimodal Integrated Sensing and Communications: Key Technologies and Prototype Validation[J]. Journal of Electronics & Information Technology. doi: 10.11999/JEIT250685

融合视觉的多模态通信感知一体化关键技术及原型验证

doi: 10.11999/JEIT250685 cstr: 32379.14.JEIT250685
详细信息
    作者简介:

    赵川斌:男,高级工程师,博士生,研究方向为无线通感一体化、多模态AI感知、移动边缘计算

    许伟华:博士、研究员,研究方向为无线通信、人工智能、多智能体通信与环境感知等

    林博:博士生,研究方向为智能通信、通信大模型、AI-RAN、通信感知一体化等

    张腾宇:博士生,研究方向为包括无线通信、通信感知一体化、通信硬件系统设计、雷达硬件系统设计等

    冯源:硕士,研究方向为智能通信、通感一体化、阵列信号处理等

    高飞飞:长聘教授,博士生导师,研究方向为智能无线通信与感知、通感一体化、电磁感知论、具身智能等

    通讯作者:

    高飞飞 feifeigao@tsing.edu.cn

  • 中图分类号: TN929.5

Vision Enabled Multimodal Integrated Sensing and Communications: Key Technologies and Prototype Validation

  • 摘要: 面向6G系统的通信感知一体化(ISAC)技术具备感知物理世界的能力。视觉可以感知环境进而辅助通信,同样无线信号可以辅助突破视觉感知的局限。该文首先探明环境视觉与无线通信的内在关联机理,进而阐述基于视觉感知辅助通信的算法,包括波束预测、遮挡预判和多基站多用户的资源调度分配方法;然后基于无线信号辅助视觉感知,探索基于无线信号辅助视觉的环境感知,提出静态环境重建和动态目标感知方法,从而辅助恶劣天气、不良光照等非理想条件下的鲁棒感知;形成一套完整的融合视觉的多模态无线通信感知一体化理论和技术方法。同时,进行了软硬件仿真测试与原型平台验证。实验结果表明,具备视觉支持的多模态ISAC系统的应用潜力巨大。
  • 图  1  视觉感知辅助无线通信感知一体化示意图

    图  2  基站与终端视觉感知的毫米波波束预测

    图  3  基于毫米波通感一体的高精度三维点云地图重建图

    图  4  软件仿真数据库构建示意图

    图  5  融合视觉感知的智能基站端

    图  6  融合视觉感知的智能用户端

    图  7  毫米波通信感知一体化设备的基带链路

    图  8  数据集采集实际场景图

    图  9  无线信号辅助视觉环境感知的深度估计结果

    表  1  视觉辅助通信波束验证结果

    未来33 ms 未来66 ms 未来99 ms 未来132 ms
    场景1 场景2 场景3 所有 场景1 场景2 场景3 所有 场景1 场景2 场景3 所有 场景1 场景2 场景3 所有
    被遮挡准确率 94.3 95.4 97.7 95.5 88.1 92.4 95.4 91.8 82.2 92.0 93.2 90.5 76.8 90.3 95.7 88.2
    不被遮挡准确率 98.9 99.1 99.3 99.1 98.7 98.8 99.6 99.1 97.9 98.1 98.2 98.1 98.5 98.5 96.3 98.0
    准确率 98.3 98.2 99.3 98.6 97.8 96.7 99.3 97.7 96.9 96.2 97.7 96.8 96.3 95.8 96.3 96.1
    下载: 导出CSV

    表  2  无线融合视觉深度估计算法与纯视觉算法指标对比

    天气RMSERMSELOGMAEMAELOGABSRELSQRELDELTAL1DELTAL2DELTAL3
    仅用
    视觉
    雨天10.700.452.130.560.2915.710.49780.79980.9020
    雪天18.560.993.250.930.7226.350.14690.32560.4316
    晴天5.970.451.680.500.2612.990.63580.94790.9803
    视觉融合
    无线信号
    雨天6.350.221.490.380.1713.880.80910.94890.9860
    雪天7.990.371.790.480.3018.900.70030.85980.9301
    晴天5.610.191.210.320.1413.150.90520.97090.9914
    下载: 导出CSV
  • [1] MASCHIETTI F, GESBERT D, DE KERRET P, et al. Robust location-aided beam alignment in millimeter wave massive MIMO[C]. 2017 IEEE Global Communications Conference, Singapore, Singapore, 2017: 1–6. doi: 10.1109/GLOCOM.2017.8254901.
    [2] MUPPIRISETTY L S, CHARALAMBOUS T, KAROUT J, et al. Location-aided pilot contamination avoidance for massive MIMO systems[J]. IEEE Transactions on Wireless Communications, 2018, 17(4): 2662–2674. doi: 10.1109/TWC.2018.2800038.
    [3] DESTINO G and WYMEERSCH H. On the trade-off between positioning and data rate for mm-wave communication[C]. 2017 IEEE International Conference on Communications Workshops (ICC Workshops), Paris, France, 2017: 797–802. doi: 10.1109/ICCW.2017.7962756.
    [4] GAO Jiabao, ZHONG Caijun, and ZHANG Zhaoyang. Location-aided deep learning-based channel estimation for hybrid massive MIMO systems[C]. 2021 13th International Conference on Wireless Communications and Signal Processing (WCSP), Changsha, China, 2021: 1–6. doi: 10.1109/WCSP52459.2021.9613576.
    [5] CHEN Xuhong, LU Jiaxun, LIU Shanyun, et al. Location-aided umbrella-shaped massive MIMO beamforming scheme with transmit diversity for high speed railway communications[C]. 2016 IEEE 83rd Vehicular Technology Conference (VTC Spring), Nanjing, China, 2016: 1–5. doi: 10.1109/VTCSpring.2016.7504325.
    [6] CHOWDHURY M Z, SHAHJALAL M, AHMED S, et al. 6G wireless communication systems: Applications, requirements, technologies, challenges, and research directions[J]. IEEE Open Journal of the Communications Society, 2020, 1: 957–975. doi: 10.1109/OJCOMS.2020.3010270.
    [7] CUI Yuanhao, LIU Fan, JING Xiaojun, et al. Integrating sensing and communications for ubiquitous IoT: Applications, trends, and challenges[J]. IEEE Network, 2021, 35(5): 158–167. doi: 10.1109/MNET.010.2100152.
    [8] GAO Feifei, LIN Bo, BIAN Chenghong, et al. FusionNet: Enhanced beam prediction for mmWave communications using sub-6 GHz channel and a few pilots[J]. IEEE Transactions on Communications, 2021, 69(12): 8488–8500. doi: 10.1109/TCOMM.2021.3110301.
    [9] WU Shunyao, CHAKRABARTI C, and ALKHATEEB A. LiDAR-aided mobile blockage prediction in real-world millimeter wave systems[C]. 2022 IEEE Wireless Communications and Networking Conference (WCNC), Austin, USA, 2022: 2631–2636. doi: 10.1109/WCNC51071.2022.9771651.
    [10] XU Weihua, GAO Feifei, JIN Shi, et al. 3D scene-based beam selection for mmWave communications[J]. IEEE Wireless Communications Letters, 2020, 9(11): 1850–1854. doi: 10.1109/LWC.2020.3005983.
    [11] DEMIRHAN U and ALKHATEEB A. Radar aided 6G beam prediction: Deep learning algorithms and real-world demonstration[C]. 2022 IEEE Wireless Communications and Networking Conference (WCNC), Austin, USA, 2022: 2655–2660. doi: 10.1109/WCNC51071.2022.9771564.
    [12] KLAUTAU A, GONZÁLEZ-PRELCIC N, and HEATH R W. LIDAR data for deep learning-based mmWave beam-selection[J]. IEEE Wireless Communications Letters, 2019, 8(3): 909–912. doi: 10.1109/LWC.2019.2899571.
    [13] DIAS M, KLAUTAU A, GONZÁLEZ-PRELCIC N, et al. Position and LIDAR-aided mmWave beam selection using deep learning[C]. 2019 IEEE 20th International Workshop on Signal Processing Advances in Wireless Communications (SPAWC), Cannes, France, 2019: 1–5. doi: 10.1109/SPAWC.2019.8815569.
    [14] MASHHADI M B, JANKOWSKI M, TUNG T Y, et al. Federated mmWave beam selection utilizing LIDAR data[J]. IEEE Wireless Communications Letters, 2021, 10(10): 2269–2273. doi: 10.1109/LWC.2021.3099136.
    [15] JIANG Shuaifeng, CHARAN G, and ALKHATEEB A. LiDAR aided future beam prediction in real-world millimeter wave V2I communications[J]. IEEE Wireless Communications Letters, 2023, 12(2): 212–216. doi: 10.1109/LWC.2022.3219409.
    [16] SALEHI B, REUS-MUNS G, ROY D, et al. Deep learning on multimodal sensor data at the wireless edge for vehicular network[J]. IEEE Transactions on Vehicular Technology, 2022, 71(7): 7639–7655. doi: 10.1109/TVT.2022.3170733.
    [17] CHARAN G, ALRABEIAH M, and ALKHATEEB A. Vision-aided 6G wireless communications: Blockage prediction and proactive handoff[J]. IEEE Transactions on Vehicular Technology, 2021, 70(10): 10193–10208. doi: 10.1109/TVT.2021.3104219.
    [18] XU Weihua, GAO Feifei, ZHANG Jianhua, et al. Deep learning based channel covariance matrix estimation with user location and scene images[J]. IEEE Transactions on Communications, 2021, 69(12): 8145–8158. doi: 10.1109/TCOMM.2021.3107947.
    [19] ALRABEIAH M, HREDZAK A, and ALKHATEEB A. Millimeter wave base stations with cameras: Vision-aided beam and blockage prediction[C]. 2020 IEEE 91st Vehicular Technology Conference (VTC2020-Spring), Antwerp, Belgium, 2020: 1–5. doi: 10.1109/VTC2020-Spring48590.2020.9129369.
    [20] KODA Y, NAKASHIMA K, YAMAMOTO K, et al. Handover management for mmWave networks with proactive performance prediction using camera images and deep reinforcement learning[J]. IEEE Transactions on Cognitive Communications and Networking, 2020, 6(2): 802–816. doi: 10.1109/TCCN.2019.2961655.
    [21] CHARAN G, ALRABEIAH M, and ALKHATEEB A. Vision-aided dynamic blockage prediction for 6G wireless communication networks[C]. 2021 IEEE International Conference on Communications Workshops (ICC Workshops), Montreal, Canada, 2021: 1–6. doi: 10.1109/ICCWorkshops50388.2021.9473651.
    [22] NISHIO T, OKAMOTO H, NAKASHIMA K, et al. Proactive received power prediction using machine learning and depth images for mmWave networks[J]. IEEE Journal on Selected Areas in Communications, 2019, 37(11): 2413–2427. doi: 10.1109/JSAC.2019.2933763.
    [23] KODA Y, PARK J, BENNIS M, et al. Communication-efficient multimodal split learning for mmWave received power prediction[J]. IEEE Communications Letters, 2020, 24(6): 1284–1288. doi: 10.1109/LCOMM.2020.2978824.
    [24] TIAN Yu and WANG Chenwei. Vision-aided beam tracking: Explore the proper use of camera images with deep learning[C]. 2021 IEEE 94th Vehicular Technology Conference (VTC2021-Fall), Norman, USA, 2021: 1–5. doi: 10.1109/VTC2021-Fall52928.2021.9625195.
    [25] AHN Y, KIM J, KIM S, et al. Toward intelligent millimeter and terahertz communication for 6G: Computer vision-aided beamforming[J]. IEEE Wireless Communications, 2023, 30(5): 179–186. doi: 10.1109/MWC.007.2200155.
    [26] WU Shunyao, ALRABEIAH M, CHAKRABARTI C, et al. Blockage prediction using wireless signatures: Deep learning enables real-world demonstration[J]. IEEE Open Journal of the Communications Society, 2022, 3: 776–796. doi: 10.1109/OJCOMS.2022.3162591.
    [27] DING Ruijin, XU Weihua, YUAN Wanmai, et al. Vision-aided blockage avoidance in UAV-assisted V2X communications[Z]. arXiv: 2207.12991, 2022. doi: 10.48550/arXiv.2207.12991.
    [28] CHARAN G, HREDZAK A, and ALKHATEEB A. Millimeter wave drones with cameras: Computer vision aided wireless beam prediction[C]. 2023 IEEE International Conference on Communications Workshops (ICC Workshops), Rome, Italy, 2023: 1896–1901. doi: 10.1109/ICCWorkshops57953.2023.10283784.
    [29] XU Weihua, ZHAO Chuanbin, and GAO Feifei. Angle domain channel-based camera pose correction for vision-aided ISAC systems[J]. IEEE Wireless Communications Letters, 2024, 13(8): 2080–2084. doi: 10.1109/LWC.2024.3401408.
    [30] CHEN Quan, ZHU Hai, YANG Lei, et al. Edge computing assisted autonomous flight for UAV: Synergies between vision and communications[J]. IEEE Communications Magazine, 2021, 59(1): 28–33. doi: 10.1109/MCOM.001.2000501.
  • 加载中
图(9) / 表(2)
计量
  • 文章访问数:  88
  • HTML全文浏览量:  46
  • PDF下载量:  36
  • 被引次数: 0
出版历程
  • 收稿日期:  2025-07-21
  • 修回日期:  2025-10-26
  • 录用日期:  2025-11-05
  • 网络出版日期:  2025-11-14

目录

    /

    返回文章
    返回