高级搜索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于空间参考信号的数字干扰对消系统性能分析

信业镝 何方敏 葛松虎 邢金岭 郭宇 崔中普

信业镝, 何方敏, 葛松虎, 邢金岭, 郭宇, 崔中普. 基于空间参考信号的数字干扰对消系统性能分析[J]. 电子与信息学报. doi: 10.11999/JEIT250679
引用本文: 信业镝, 何方敏, 葛松虎, 邢金岭, 郭宇, 崔中普. 基于空间参考信号的数字干扰对消系统性能分析[J]. 电子与信息学报. doi: 10.11999/JEIT250679
XIN Yedi, HE Fangmin, GE Songhu, XING Jinling, GUO Yu, CUI Zhongpu. Performance Analysis of Spatial-Reference-Signal-Based Digital Interference Cancellation Systems[J]. Journal of Electronics & Information Technology. doi: 10.11999/JEIT250679
Citation: XIN Yedi, HE Fangmin, GE Songhu, XING Jinling, GUO Yu, CUI Zhongpu. Performance Analysis of Spatial-Reference-Signal-Based Digital Interference Cancellation Systems[J]. Journal of Electronics & Information Technology. doi: 10.11999/JEIT250679

基于空间参考信号的数字干扰对消系统性能分析

doi: 10.11999/JEIT250679 cstr: 32379.14.JEIT250679
基金项目: 国家自然科学基金(62301588, 62241111),电磁能技术全国重点实验室基金项目(61422172320303)
详细信息
    作者简介:

    信业镝:男,博士生,研究方向为通信抗干扰

    何方敏:男,研究员,研究方向为电磁兼容、干扰对消、信号处理

    葛松虎:男,副研究员,研究方向为通信信号处理、电磁兼容

    邢金岭:男,副研究员,研究方向为通信信号处理、电磁兼容

    郭宇:男,副教授,研究方向为人工智能

    崔中普:男,助理研究员,研究方向为干扰对消、数字信号处理

    通讯作者:

    葛松虎 gesonghu23@nue.edu.cn

  • 中图分类号: TN975

Performance Analysis of Spatial-Reference-Signal-Based Digital Interference Cancellation Systems

Funds: The National Nature Science Foundation of China (62301588, 62241111), The National Key Laboratory Foundation of Electromagnetic Energy (61422172320303)
  • 摘要: 为了解决基于耦合器的传统参考信号取样方式在大功率射频系统部署难题,该文提出了一种采用定向天线和接收链路的数字干扰对消系统。针对该系统,基于干扰信号矩形带限频谱特征的假设,分别推导了接收信道和取样信道在多径环境下干扰对消比性能闭式表达式。此外,进一步给出了对消比性能上限表达式。最后,利用蒙特卡罗仿真验证了3种典型调制方式下推导结果的准确性,并分析了系统参数对于对消比的性能影响。结果表明,基于空间参考信号的数字干扰对消系统对消比性能受接收通道干噪比、取样通道干噪比、滤波器抽头数目、多径时延扩展长度、多径数目和时延匹配误差影响。
  • 图  1  基于空间参考信号的数字干扰对消系统

    图  2  对消比性能与接收通道干噪比关系

    图  3  对消比性能与接收通道与取样通道时延差关系

    图  4  对消比性能与抽头数目关系

    图  5  多径环境下对消比性能与抽头数目关系

    图  6  多径环境下对消比性能与时延扩展长度关系

    图  7  多径环境下对消比性能与多径数目关系

    图  8  对消比性能上边界

    图  9  对消比性能等高线

    表  1  仿真参数设置

    序号波形参数取值
    1BPSK调制信号带宽10 MHz
    采样率20 MSPS
    成型脉冲根升余弦
    滚降因子0.10
    2线性调频信号带宽10 MHz
    采样率20 MSPS
    扫频斜率1
    3多音信号带宽10 MHz
    采样率20 MSPS
    频率间隔50 KHz
    下载: 导出CSV
  • [1] ALLSEBROOK K and RIBBLE C. VHF cosite interference challenges and solutions for the United States Marine Corps' expeditionary fighting vehicle program[C]. IEEE MILCOM 2004. Military Communications Conference, 2004, Monterey, CA, USA, 2004: 548–554. doi: 10.1109/MILCOM.2004.1493324.
    [2] MOHAMMADI M, MOBINI Z, GALAPPATHTHIGE D, et al. A comprehensive survey on full-duplex communication: Current solutions, future trends, and open issues[J]. IEEE Communications Surveys & Tutorials, 2023, 25(4): 2190–2244. doi: 10.1109/COMST.2023.3318198.
    [3] RIIHONEN T, KORPI D, RANTULA O, et al. Inband full-duplex radio transceivers: A paradigm shift in tactical communications and electronic warfare?[J]. IEEE Communications Magazine, 2017, 55(10): 30–36. doi: 10.1109/MCOM.2017.1700220.
    [4] ZHANG Jiahao, HE Fangmin, LI Yi, et al. Multichannel adaptive interference cancellation for full-duplex high power AM radios[J]. IEEE Transactions on Electromagnetic Compatibility, 2022, 64(4): 1010–1020. doi: 10.1109/TEMC.2022.3160002.
    [5] BHARADIA D, MCMILIN E, and KATTI S. Full duplex radios[C]. Proceedings of the ACM SIGCOMM 2013 Conference on SIGCOMM, Hong Kong, China, 2013: 375–386. doi: 10.1145/2486001.2486033.
    [6] 秦焕丁, 孟进, 何方敏, 等. 多抽头结构的宽带射频干扰对消及优化设计[J]. 系统工程与电子技术, 2023, 45(9): 2681–2689. doi: 10.12305/j.issn.1001-506X.2023.09.05.

    QIN Huanding, MENG Jin, HE Fangmin, et al. Optimization design of wideband RF interference cancellation based on multi-tap structure[J]. Systems Engineering and Electronics, 2023, 45(9): 2681–2689. doi: 10.12305/j.issn.1001-506X.2023.09.05.
    [7] HONG Z H, ZHANG Liang, LI Wei, et al. Frequency-domain RF self-interference cancellation for in-band full-duplex communications[J]. IEEE Transactions on Wireless Communications, 2023, 22(4): 2352–2363. doi: 10.1109/TWC.2022.3211196.
    [8] HONG Z H, ZHANG Liang, WU Yiyan, et al. Iterative successive nonlinear self-interference cancellation for in-band full-duplex communications[J]. IEEE Transactions on Broadcasting, 2024, 70(1): 2–13. doi: 10.1109/TBC.2023.3291136.
    [9] CHU Jianjun, TANG Yanqun, and ZHOU Yu. Digital domain self-interference cancellation based on modified variable step-size LMS algorithm[C]. 2023 5th International Conference on Communications, Information System and Computer Engineering (CISCE), Guangzhou, China, 2023: 9–14. doi: 10.1109/CISCE58541.2023.10142735.
    [10] SHAHGHASI A, CRIADO R, MONTORO G, et al. Digital self-interference cancellation for in-band full-duplex communications[C]. 2025 International Workshop on Integrated Nonlinear Microwave and Millimetre-Wave Circuits (INMMIC), Torino, Italy, 2025: 1–3. doi: 10.1109/INMMIC64198.2025.10975378.
    [11] HUANG Xiaojing and GUO Y J. Radio frequency self-interference cancellation with analog least mean-square loop[J]. IEEE Transactions on Microwave Theory and Techniques, 2017, 65(9): 3336–3350. doi: 10.1109/TMTT.2017.2654218.
    [12] KOLODZIEJ K E, MCMICHAEL J G, and PERRY B T. Multitap RF canceller for in-band full-duplex wireless communications[J]. IEEE Transactions on Wireless Communications, 2016, 15(6): 4321–4334. doi: 10.1109/TWC.2016.2539169.
    [13] AHMED E and ELTAWIL A M. All-digital self-interference cancellation technique for full-duplex systems[J]. IEEE Transactions on Wireless Communications, 2015, 14(7): 3519–3532. doi: 10.1109/TWC.2015.2407876.
    [14] KORPI D, ANTTILA L, SYRJÄLÄ V, et al. Widely linear digital self-interference cancellation in direct-conversion full-duplex transceiver[J]. IEEE Journal on Selected Areas in Communications, 2014, 32(9): 1674–1687. doi: 10.1109/JSAC.2014.2330093.
    [15] ELSAYED M, EL-BANNA A A A, DOBRE O A, et al. Machine learning-based self-interference cancellation for full-duplex radio: Approaches, open challenges, and future research directions[J]. IEEE Open Journal of Vehicular Technology, 2024, 5: 21–47. doi: 10.1109/OJVT.2023.3331185.
    [16] HU Cong, CHEN Yuanxiang, WANG Yuhan, et al. Digital self-interference cancellation for full-duplex systems based on deep learning[J]. AEU - International Journal of Electronics and Communications, 2023, 168: 154707. doi: 10.1016/j.aeue.2023.154707.
    [17] GE Songhu, MENG Jin, XING Jinling, et al. A digital-domain controlled nonlinear RF interference cancellation scheme for co-site wideband radios[J]. IEEE Transactions on Electromagnetic Compatibility, 2019, 61(5): 1647–1654. doi: 10.1109/TEMC.2018.2871129.
    [18] KIM J, LEE H, DO H, et al. On the learning of digital self-interference cancellation in full-duplex radios[J]. IEEE Wireless Communications, 2024, 31(4): 184–191. doi: 10.1109/MWC.014.2300403.
    [19] GRIMM M, ALLÉN M, MARTTILA J, et al. Joint mitigation of nonlinear RF and baseband distortions in wideband direct-conversion receivers[J]. IEEE Transactions on Microwave Theory and Techniques, 2014, 62(1): 166–182. doi: 10.1109/TMTT.2013.2292603.
    [20] GE Songhu, XING Jinling, LIU Yongcai, et al. Dual-stage co-site RF interference canceller for wideband direct-conversion receivers using reduced observation chain[J]. IEEE Transactions on Electromagnetic Compatibility, 2020, 62(3): 923–932. doi: 10.1109/TEMC.2019.2914369.
    [21] LUO Haifeng, HOLM M, and RATNARAJAH T. On the performance of active analog self-interference cancellation techniques for beyond 5G systems[J]. China Communications, 2021, 18(10): 158–168. doi: 10.23919/JCC.2021.10.011.
    [22] 李成全. 舰船一体化集成超短波通信抗干扰阵列研究[D]. [硕士论文], 中国舰船研究院, 2013.

    LI Chengquan. Study on the shipboard integrated V/UHF communication antenna array with anti-interference function[D]. [Master dissertation], China Ship Research and Development Academy, 2013.
    [23] QIN Huanding, HE Fangmin, MENG Jin, et al. Analysis and optimal design of radio-frequency interference adaptive cancellation system with delay mismatch[J]. IEEE Transactions on Electromagnetic Compatibility, 2019, 61(6): 2015–2023. doi: 10.1109/TEMC.2019.2950718.
    [24] XING Jinling, GE Songhu, LIU Yongcai, et al. Comprehensive analysis of quantization effects on digital-controlled adaptive self-interference cancellation system[J]. IEEE Access, 2020, 8: 75772–75784. doi: 10.1109/ACCESS.2020.2989001.
    [25] 王俊, 赵宏志, 马万治, 等. 同时同频全双工宽带射频自干扰抵消性能分析[J]. 通信学报, 2016, 37(9): 121–130. doi: 10.11959/j.issn.1000-436x.2016184.

    WANG Jun, ZHAO Hongzhi, MA Wanzhi, et al. Performance analysis of broadband self-interference cancellation at RF domain in co-frequency co-time full duplex systems[J]. Journal on Communications, 2016, 37(9): 121–130. doi: 10.11959/j.issn.1000-436x.2016184.
    [26] ZHAO Hongzhi, WANG Jun, and TANG Youxi. Performance analysis of RF self-interference cancellation in broadband full duplex systems[C]. 2016 IEEE International Conference on Communications Workshops (ICC), Kuala Lumpur, Malaysia, 2016: 175–179. doi: 10.1109/ICCW.2016.7503784.
    [27] HE Zhaojun, SHAO Shihai, SHEN Ying, et al. Performance analysis of RF self-interference cancellation in full-duplex wireless communications[J]. IEEE Wireless Communications Letters, 2014, 3(4): 405–408. doi: 10.1109/LWC.2014.2322097.
    [28] QUAN Xin, LIU Ying, SHAO Shihai, et al. Impacts of phase noise on digital self-interference cancellation in full-duplex communications[J]. IEEE Transactions on Signal Processing, 2017, 65(7): 1881–1893. doi: 10.1109/TSP.2017.2652384.
  • 加载中
图(9) / 表(1)
计量
  • 文章访问数:  35
  • HTML全文浏览量:  15
  • PDF下载量:  5
  • 被引次数: 0
出版历程
  • 收稿日期:  2025-07-21
  • 修回日期:  2025-11-03
  • 录用日期:  2025-11-03
  • 网络出版日期:  2025-11-11

目录

    /

    返回文章
    返回