高级搜索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

LEO卫星网络中基于拥塞感知和内容价值的自适应缓存部署

刘忠禹 谢亚琴 张余 朱建月

刘忠禹, 谢亚琴, 张余, 朱建月. LEO卫星网络中基于拥塞感知和内容价值的自适应缓存部署[J]. 电子与信息学报. doi: 10.11999/JEIT250670
引用本文: 刘忠禹, 谢亚琴, 张余, 朱建月. LEO卫星网络中基于拥塞感知和内容价值的自适应缓存部署[J]. 电子与信息学报. doi: 10.11999/JEIT250670
LIU Zhongyu, XIE Yaqin, ZHANG Yu, ZHU Jianyue. Adaptive Cache Deployment Based on Congestion Awareness and Content Value in LEO Satellite Networks[J]. Journal of Electronics & Information Technology. doi: 10.11999/JEIT250670
Citation: LIU Zhongyu, XIE Yaqin, ZHANG Yu, ZHU Jianyue. Adaptive Cache Deployment Based on Congestion Awareness and Content Value in LEO Satellite Networks[J]. Journal of Electronics & Information Technology. doi: 10.11999/JEIT250670

LEO卫星网络中基于拥塞感知和内容价值的自适应缓存部署

doi: 10.11999/JEIT250670 cstr: 32379.14.JEIT250670
详细信息
    作者简介:

    刘忠禹:男,硕士生,研究方向为拥塞控制理论

    谢亚琴:女,副教授,硕士生导师,研究方向为无线定位、卫星导航和网络资源管理

    张余:男,讲师,硕士生导师,研究方向为无蜂窝大规模MIMO通信技术、网络资源管理

    朱建月:女,讲师,硕士生导师,研究方向为无线通信系统中的多址接入技术、面向超可靠低时延通信需求的传输技术

    通讯作者:

    谢亚琴 xyq@nuist.edu.cn

  • 中图分类号: TN927

Adaptive Cache Deployment Based on Congestion Awareness and Content Value in LEO Satellite Networks

  • 摘要: 低地球轨道(LEO)卫星网络凭借其全球无缝覆盖与低传输延迟的优势,被视为空天地一体化通信系统的关键组成部分。然而,用户请求若未命中本地卫星缓存,则需通过星间链路或星地链路回源,从而引入较高延迟。同时,受限于星载硬件资源,卫星节点的存储容量极为有限,难以支持大规模内容缓存,这对动态自适应的缓存部署机制设计提出了严峻挑战。该文聚焦LEO卫星网络中的缓存部署问题,基于拥塞感知和内容价值,提出一种自适应缓存部署方案,根据网络的实时状态实施缓存决策,从而提升缓存命中率、降低星地回传负载、优化用户服务质量。首先,卫星节点实时监测链路拥塞状态,并将链路拥塞的概率通过数据包反馈给下游节点;其次,结合兴趣包的内容流行度、数据包的新鲜度构建二维价值评估模型;最后,依据拥塞等级动态调整缓存阈值,再结合跳数控制因子进行缓存决策。仿真结果表明,所提策略在缓存命中率、平均路由跳数及平均请求时延3项核心指标上均优于基于流行度感知的邻近度缓存(PaCC)与处处缓存(LCE)策略:在缓存容量动态变化场景下,缓存命中率较PaCC和LCE策略分别提升9.5%和43.7%;在Zipf分布参数变化场景下,缓存命中率较上述2种策略分别提升8.7%和29.1%;在网络传输性能方面,所提策略的平均路由跳数较PaCC策略总体下降2.24%,平均请求时延则较PaCC和LCE策略总体下降2.8%和9.5%。
  • 图  1  基于ICN的LEO卫星网络架构图

    图  2  缓存策略整体工作流程图

    图  3  兴趣包和数据包的扩展格式

    图  4  重度拥塞阈值敏感度分析

    图  5  兴趣包处理流程图

    图  6  数据包缓存放置流程图

    图  7  LEO卫星网络仿真拓扑图

    图  8  缓存命中率的变化关系图

    图  9  不同Zipf分布参数下平均路由跳数比与缓存容量的关系图

    图  10  平均请求时延与Zipf分布参数的关系图

    表  1  内容流行度记录表

    内容名称请求数量上一时间段综合内容流行度当前综合内容流行度
    A. mp4560.510.57
    B. jpg420.460.53
    C. com300.370.42
    ············
    下载: 导出CSV

    表  2  平均请求时延与缓存容量关系表

    缓存容量(MB)平均请求时延(ms)
    本文方法PaCCProbLCDLCE
    10278.33281.58287.25291.56295.27
    50243.76250.46258.36262.74267.38
    80223.51229.27234.74239.62243.54
    100212.37218.62225.42233.45236.67
    下载: 导出CSV
  • [1] HUANG Huawei, GUO Song, LIANG Weifa, et al. Green data-collection from geo-distributed IoT networks through low-earth-orbit satellites[J]. IEEE Transactions on Green Communications and Networking, 2019, 3(3): 806–816. doi: 10.1109/tgcn.2019.2909140.
    [2] RODRÍGUEZ-PÉREZ M, HERRERÍA-ALONSO S, SUÁREZ-GONZALEZ A, et al. Cache placement in an NDN-based LEO satellite network constellation[J]. IEEE Transactions on Aerospace and Electronic Systems, 2023, 59(4): 3579–3587. doi: 10.1109/taes.2022.3227530.
    [3] JACOBSON V, SMETTERS D K, THORNTON J D, et al. Networking named content[C]. The 5th International Conference on Emerging Networking Experiments and Technologies, Rome, Italy, 2009: 1–12. doi: 10.1145/1658939.1658941.
    [4] XYLOMENOS G, VERVERIDIS C N, SIRIS V A, et al. A survey of information-centric networking research[J]. IEEE Communications Surveys & Tutorials, 2014, 16(2): 1024–1049. doi: 10.1109/surv.2013.070813.00063.
    [5] ZHANG Meng, LUO Hongbin, and ZHANG Hongke. A survey of caching mechanisms in information-centric networking[J]. IEEE Communications Surveys & Tutorials, 2015, 17(3): 1473–1499. doi: 10.1109/comst.2015.2420097.
    [6] LIU Zhiguo, LI Weijie, FENG Jianxin, et al. A regional interest-aware caching placement scheme for reducing latency in the LEO satellite networks[J]. Peer-to-Peer Networking and Applications, 2022, 15(6): 2474–2487. doi: 10.1007/s12083-022-01361-0.
    [7] LIU Zhiguo, LIU Zhengxia, WANG Lin, et al. The satellite network cache placement strategy based on content popularity and node collaboration[J]. PLoS One, 2024, 19(8): e0307280. doi: 10.1371/journal.pone.0307280.
    [8] LI Zhuo, LIU Jindian, YAN Liu, et al. Smart name look up for NDN forwarding plane via neural networks[J]. IEEE/ACM Transactions on Networking, 2022, 30(2): 529–541. doi: 10.1109/tnet.2021.3119769.
    [9] LI Zhuo, XU Yaping, ZHANG Beichuan, et al. Packet forwarding in named data networking requirements and survey of solutions[J]. IEEE Communications Surveys & Tutorials, 2019, 21(2): 1950–1987. doi: 10.1109/comst.2018.2880444.
    [10] ZHANG Jiaran, YANG Yating, SANG Huanyu, et al. Content-aware proportional caching for efficient data delivery over satellite network[C]. 2023 IEEE Global Communications Conference, Kuala Lumpur, Malaysia, 2023: 4890–4895. doi: 10.1109/GLOBECOM54140.2023.10437961.
    [11] CHEN Nuo, SONG Yujie, CAO Yue, et al. Network-layer perspectives on satellite–terrestrial integrated networks in 6G: A comprehensive review[J]. Engineering, 2025. doi: 10.1016/j.eng.2025.05.012.
    [12] AFANASYEV A, MOISEENKO I, and ZHANG Lixia. ndnSIM: NDN simulator for NS-3[R]. Technical Report NDN-0005, 2012.
    [13] MASTORAKIS S, AFANASYEV A, and ZHANG Lixia. On the evolution of ndnSIM: An open-source simulator for NDN experimentation[J]. ACM SIGCOMM Computer Communication Review, 2017, 47(3): 19–33. doi: 10.1145/3138808.3138812.
    [14] NAEEM M A, DIN I U, MENG Yahui, et al. Centrality-based on-path caching strategies in NDN-based internet of things: A survey[J]. IEEE Communications Surveys & Tutorials, 2025, 27(4): 2621–2657. doi: 10.1109/COMST.2024.3493626.
    [15] AMADEO M and RUGGERI G. Exploring in-network computing with information-centric networking: Review and research opportunities[J]. Future Internet, 2025, 17(1): 42. doi: 10.3390/fi17010042.
    [16] YOVITA L V and SYAMBAS N R. Caching on named data network: A survey and future research[J]. International Journal of Electrical and Computer Engineering, 2018, 8(6): 4456–4466.
    [17] LAOUTARIS N, CHE Hao, and STAVRAKAKIS I. The LCD interconnection of LRU caches and its analysis[J]. Performance Evaluation, 2006, 63(7): 609–634. doi: 10.1016/j.peva.2005.05.003.
    [18] 朱轶, 糜正琨, 王文鼐. 一种基于内容流行度的内容中心网络缓存概率置换策略[J]. 电子与信息学报, 2013, 35(6): 1305-1310.

    ZHU Yi, MI Zhengkun, WANG Wennai. A cache probability replacement policy based on content popularity in content centric networks[J]. Journal of Electronics & Information Technology, 2013, 35(6): 1305–1310.
    [19] AMADEO M, CAMPOLO C, RUGGERI G, et al. Popularity-aware closeness based caching in NDN edge networks[J]. Sensors, 2022, 22(9): 3460. doi: 10.3390/s22093460.
    [20] HUBBALLI N, CHAUDHARY P, and KULKARNI S G. PePC: Popularity based early predictive caching in named data networks[C]. The 2024 IEEE 21st Consumer Communications & Networking Conference, Las Vegas, USA, 2024: 478–483. doi: 10.1109/CCNC51664.2024.10454826.
    [21] KUMARI M K, TRIPATHI N, and JOSHI P. ProxaDyn: A proximity-aware dynamic caching approach for named data networks[J]. IEEE Transactions on Network Science and Engineering, 2025, 12(3): 2360–2372. doi: 10.1109/TNSE.2025.3547424.
    [22] HOU Jiacheng, TAO Tianhao, LU Haoye, et al. Intelligent caching with graph neural network-based deep reinforcement learning on SDN-based ICN[J]. Future Internet, 2023, 15(8): 251. doi: 10.3390/fi15080251.
    [23] LIU Shuaijun, HU Xin, WANG Yipeng, et al. Distributed caching based on matching game in LEO satellite constellation networks[J]. IEEE Communications Letters, 2018, 22(2): 300–303. doi: 10.1109/lcomm.2017.2771434.
    [24] YANG Zhihua, LI Yue, YUAN Peng, et al. TCSC: A novel file distribution strategy in integrated LEO satellite-terrestrial networks[J]. IEEE Transactions on Vehicular Technology, 2020, 69(5): 5426–5441. doi: 10.1109/tvt.2020.2979692.
    [25] TANG Jin, LI Jian, ZHANG Lan, et al. Opportunistic content-aware routing in satellite-terrestrial integrated networks[J]. IEEE Transactions on Mobile Computing, 2024, 23(11): 10460–10474. doi: 10.1109/TMC.2024.3377729.
    [26] CHAUDHARY P and HUBBALLI N. PeNCache: Popularity based cooperative caching in named data networks[J]. Computer Networks, 2025, 257: 110995. doi: 10.1016/j.comnet.2024.110995.
    [27] XU Rui, DI Xiaoqiang, CHEN Jing, et al. A hybrid caching strategy for information-centric satellite networks based on node classification and popular content awareness[J]. Computer Communications, 2023, 197: 186–198. doi: 10.1016/j.comcom.2022.10.025.
    [28] TANG Jin, LI Jian, CHEN Xianhao, et al. Cooperative caching in satellite-terrestrial integrated networks: A region features aware approach[J]. IEEE Transactions on Vehicular Technology, 2024, 73(7): 10602–10616. doi: 10.1109/TVT.2024.3369106.
    [29] JIANG Weiwei, ZHAN Yafeng, and FANG Xin. Satellite edge computing for mobile multimedia communications: A multi-agent federated reinforcement learning approach[J]. ACM Transactions on Autonomous and Adaptive Systems, 2025. doi: 10.1145/3715146.
    [30] PAN Rong, NATARAJAN P, PIGLIONE C, et al. PIE: A lightweight control scheme to address the bufferbloat problem[C]. The 2013 IEEE 14th International Conference on High Performance Switching and Routing, Taipei, China, 2013: 148–155. doi: 10.1109/HPSR.2013.6602305.
    [31] GOIAN H S, AL-JARRAH O Y, MUHAIDAT S, et al. Popularity-based video caching techniques for cache-enabled networks: A survey[J]. IEEE Access, 2019, 7: 27699–27719. doi: 10.1109/access.2019.2898734.
    [32] AMADEO M, RUGGERI G, CAMPOLO C, et al. Caching popular and fresh IoT contents at the edge via named data networking[C]. IEEE Conference on Computer Communications Workshops, Toronto, Canada, 2020: 610–615. doi: 10.1109/INFOCOMWKSHPS50562.2020.9162741.
    [33] 朱玉峰. 命名数据网络中网内计算服务缓存放置与转发策略研究[D]. [硕士论文], 华中科技大学, 2022. doi: 10.27157/d.cnki.ghzku.2022.002150.

    ZHU Yufeng. Research on services cache placement and forwarding strategy of in-network computing in named data networking[D]. [Master dissertation], Huazhong University of Science and Technology, 2022. doi: 10.27157/d.cnki.ghzku.2022.002150.
    [34] PFENDER J, VALERA A, and SEAH W K G. Performance comparison of caching strategies for information-centric IoT[C]. The 5th ACM Conference on Information-Centric Networking, Boston, USA, 2018: 43–53. doi: 10.1145/3267955.3267966.
    [35] HEROUALA A T, ZIANI B, KERRACHE C A, et al. CaDaCa: A new caching strategy in NDN using data categorization[J]. Multimedia Systems, 2023, 29(5): 2935–2950. doi: 10.1007/s00530-022-00904-y.
    [36] ABO-ZEED M, DIN J B, SHAYEA I, et al. Survey on land mobile satellite system: Challenges and future research trends[J]. IEEE Access, 2019, 7: 137291–137304. doi: 10.1109/ACCESS.2019.2941900.
    [37] BRESLAU L, CAO Pei, FAN Li, et al. Web caching and Zipf-like distributions: Evidence and implications[C]. IEEE INFOCOM '99. Conference on Computer Communications. Proceedings. Eighteenth Annual Joint Conference of the IEEE Computer and Communications Societies. The Future is Now (Cat. No. 99CH36320), New York, USA, 1999: 126–134. doi: 10.1109/INFCOM.1999.749260.
    [38] 徐昌彪, 王华. CCN中基于内容流行度和节点重要度的缓存设计[J]. 电子技术应用, 2017, 43(3): 100–103. doi: 10.16157/j.issn.0258-7998.2017.03.025.

    XU Changbiao and WANG Hua. Popularity and betweenness based caching scheme in CCN[J]. Application of Electronic Technique, 2017, 43(3): 100–103. doi: 10.16157/j.issn.0258-7998.2017.03.025.
    [39] HEROUALA A T, ZIANI B, KERRACHE C A, et al. CaDaCa: A new caching strategy in NDN using data categorization[J]. Multimedia Systems, 2023, 29(5): 2935–2950. doi: 10.1007/s00530-022-00904-y.
    [40] 李庆敏, 高全力, 王西汉, 等. 命名数据网络中缓存优化策略的研究[J]. 计算机与数字工程, 2022, 50(9): 1991–1997. doi: 10.3969/j.issn.1672-9722.2022.09.022.

    LI Qingmin, GAO Quanli, WANG Xihan, et al. Research on cache optimization strategies in named data networks[J]. Computer and Digital Engineering, 2022, 50(9): 1991–1997. doi: 10.3969/j.issn.1672-9722.2022.09.022.
  • 加载中
图(10) / 表(2)
计量
  • 文章访问数:  118
  • HTML全文浏览量:  63
  • PDF下载量:  20
  • 被引次数: 0
出版历程
  • 收稿日期:  2025-07-16
  • 修回日期:  2025-10-27
  • 网络出版日期:  2025-10-31

目录

    /

    返回文章
    返回