高级搜索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

LEO卫星网络中基于拥塞感知和内容价值的自适应缓存部署

刘忠禹 谢亚琴 张余 朱建月

刘忠禹, 谢亚琴, 张余, 朱建月. LEO卫星网络中基于拥塞感知和内容价值的自适应缓存部署[J]. 电子与信息学报. doi: 10.11999/JEIT250670
引用本文: 刘忠禹, 谢亚琴, 张余, 朱建月. LEO卫星网络中基于拥塞感知和内容价值的自适应缓存部署[J]. 电子与信息学报. doi: 10.11999/JEIT250670
LIU Zhongyu, XIE Yaqin, ZHANG Yu, ZHU Jianyue. Adaptive Cache Deployment Based on Congestion Awareness and Content Value in LEO Satellite Networks[J]. Journal of Electronics & Information Technology. doi: 10.11999/JEIT250670
Citation: LIU Zhongyu, XIE Yaqin, ZHANG Yu, ZHU Jianyue. Adaptive Cache Deployment Based on Congestion Awareness and Content Value in LEO Satellite Networks[J]. Journal of Electronics & Information Technology. doi: 10.11999/JEIT250670

LEO卫星网络中基于拥塞感知和内容价值的自适应缓存部署

doi: 10.11999/JEIT250670 cstr: 32379.14.JEIT250670
详细信息
    作者简介:

    刘忠禹:男,硕士生,研究方向为拥塞控制理论

    谢亚琴:女,副教授,硕士生导师,研究方向为无线定位、卫星导航和网络资源管理

    张余:男,讲师,硕士生导师,研究方向为无蜂窝大规模MIMO通信技术、网络资源管理

    朱建月:女,讲师,硕士生导师,研究方向为无线通信系统中的多址接入技术、面向超可靠低时延通信需求的传输技术研究

    通讯作者:

    谢亚琴 xyq@nuist.edu.cn

  • 中图分类号: TN927

Adaptive Cache Deployment Based on Congestion Awareness and Content Value in LEO Satellite Networks

  • 摘要: 低地球轨道(LEO)卫星网络凭借其全球无缝覆盖与低传输延迟的优势,被视为空天地一体化通信系统的关键组成部分。然而,用户请求若未命中本地卫星缓存,则需通过星间链路或星地链路回源,从而引入较高延迟。同时,受限于星载硬件资源,卫星节点的存储容量极为有限,难以支持大规模内容缓存,这对动态自适应的缓存部署机制设计提出了严峻挑战。该文聚焦LEO卫星网络中的缓存部署问题,基于拥塞感知和内容价值,提出一种自适应缓存部署方案,根据网络的实时状态实施缓存决策,从而提升缓存命中率、降低星地回传负载、优化用户服务质量。首先,卫星节点实时监测链路拥塞状态,并将链路拥塞的概率通过数据包反馈给下游节点;其次,结合兴趣包的内容流行度、数据包的新鲜度构建二维价值评估模型;最后,依据拥塞等级动态调整缓存阈值,再结合跳数控制因子进行缓存决策。仿真结果表明,所提策略在缓存命中率、平均路由跳数及平均请求时延3项核心指标上均优于基于流行度感知的邻近度缓存(PaCC)与处处缓存(LCE)策略:在缓存容量动态变化场景下,缓存命中率较PaCC和LCE策略分别提升9.5%和43.7%;在Zipf分布参数变化场景下,缓存命中率较上述2种策略分别提升8.7%和29.1%;在网络传输性能方面,所提策略的平均路由跳数较PaCC策略总体下降2.24%,平均请求时延则较PaCC和LCE策略总体下降2.8%和9.5%。
  • 图  1  基于ICN的LEO卫星网络架构图

    图  2  缓存策略整体工作流程图

    图  3  兴趣包和数据包的扩展格式

    图  4  重度拥塞阈值敏感度分析

    图  5  兴趣包处理流程图

    图  6  数据包缓存放置流程图

    图  7  LEO卫星网络仿真拓扑图

    图  8  缓存命中率的变化关系图

    图  9  不同Zipf分布参数下平均路由跳数比与缓存容量的关系图

    图  10  平均请求时延与Zipf分布参数的关系图

    表  1  内容流行度记录表

    内容名称请求数量上一时间段综合内容流行度当前综合内容流行度
    A. mp4560.510.57
    B. jpg420.460.53
    C. com300.370.42
    ············
    下载: 导出CSV

    表  2  平均请求时延与缓存容量关系表

    缓存容量(MB)平均请求时延(ms)
    本文方法PaCCProbLCDLCE
    10278.33281.58287.25291.56295.27
    50243.76250.46258.36262.74267.38
    80223.51229.27234.74239.62243.54
    100212.37218.62225.42233.45236.67
    下载: 导出CSV
  • [1] HUANG Huawei, GUO Song, LIANG Weifa, et al. Green data-collection from geo-distributed IoT networks through low-earth-orbit satellites[J]. IEEE Transactions on Green Communications and Networking, 2019, 3(3): 806–816. doi: 10.1109/tgcn.2019.2909140.
    [2] RODRÍGUEZ-PÉREZ M, HERRERÍA-ALONSO S, SUÁREZ-GONZALEZ A, et al. Cache placement in an NDN-based LEO satellite network constellation[J]. IEEE Transactions on Aerospace and Electronic Systems, 2023, 59(4): 3579–3587. doi: 10.1109/taes.2022.3227530.
    [3] JACOBSON V, SMETTERS D K, THORNTON J D, et al. Networking named content[C]. Proceedings of the 5th International Conference on Emerging Networking Experiments and Technologies, Rome, Italy, 2009: 1–12. doi: 10.1145/1658939.1658941.
    [4] XYLOMENOS G, VERVERIDIS C N, SIRIS V A, et al. A survey of information-centric networking research[J]. IEEE Communications Surveys & Tutorials, 2014, 16(2): 1024–1049. doi: 10.1109/surv.2013.070813.00063.
    [5] ZHANG Meng, LUO Hongbin, and ZHANG Hongke. A survey of caching mechanisms in information-centric networking[J]. IEEE Communications Surveys & Tutorials, 2015, 17(3): 1473–1499. doi: 10.1109/comst.2015.2420097.
    [6] LIU Zhiguo, LI Weijie, FENG Jianxin, et al. A regional interest-aware caching placement scheme for reducing latency in the LEO satellite networks[J]. Peer-to-Peer Networking and Applications, 2022, 15(6): 2474–2487. doi: 10.1007/s12083-022-01361-0.
    [7] LIU Zhiguo, LIU Zhengxia, WANG Lin, et al. The satellite network cache placement strategy based on content popularity and node collaboration[J]. PLoS One, 2024, 19(8): e0307280. doi: 10.1371/journal.pone.0307280.
    [8] LI Zhuo, LIU Jindian, YAN Liu, et al. Smart name look up for NDN forwarding plane via neural networks[J]. IEEE/ACM Transactions on Networking, 2022, 30(2): 529–541. doi: 10.1109/tnet.2021.3119769.
    [9] LI Zhuo, XU Yaping, ZHANG Beichuan, et al. Packet forwarding in named data networking requirements and survey of solutions[J]. IEEE Communications Surveys & Tutorials, 2019, 21(2): 1950–1987. doi: 10.1109/comst.2018.2880444.
    [10] ZHANG Jiaran, YANG Yating, SANG Huanyu, et al. Content-aware proportional caching for efficient data delivery over satellite network[C]. Proceedings of 2023 IEEE Global Communications Conference, Kuala Lumpur, Malaysia, 2023: 4890–4895. doi: 10.1109/GLOBECOM54140.2023.10437961.
    [11] CHEN Nuo, SONG Yujie, CAO Yue, et al. Network-layer perspectives on satellite–terrestrial integrated networks in 6G: A comprehensive review[J]. Engineering, 2025. doi: 10.1016/j.eng.2025.05.012.
    [12] AFANASYEV A, MOISEENKO I, and ZHANG Lixia. ndnSIM: NDN simulator for NS-3[R]. Technical Report NDN-0005, 2012.
    [13] MASTORAKIS S, AFANASYEV A, and ZHANG Lixia. On the evolution of ndnSIM: An open-source simulator for NDN experimentation[J]. ACM SIGCOMM Computer Communication Review, 2017, 47(3): 19–33. doi: 10.1145/3138808.3138812.
    [14] NAEEM M A, DIN I U, MENG Yahui, et al. Centrality-based on-path caching strategies in NDN-based internet of things: A survey[J]. IEEE Communications Surveys & Tutorials, 2025, 27(4): 2621–2657. doi: 10.1109/COMST.2024.3493626.
    [15] AMADEO M and RUGGERI G. Exploring in-network computing with information-centric networking: Review and research opportunities[J]. Future Internet, 2025, 17(1): 42. doi: 10.3390/fi17010042.
    [16] YOVITA L V and SYAMBAS N R. Caching on named data network: A survey and future research[J]. International Journal of Electrical and Computer Engineering, 2018, 8(6): 4456–4466. doi: 101591/ijece.v8i6.pp4456-4466. (查阅网上资料,DOI打不开,请确认).
    [17] LAOUTARIS N, CHE Hao, and STAVRAKAKIS I. The LCD interconnection of LRU caches and its analysis[J]. Performance Evaluation, 2006, 63(7): 609–634. doi: 10.1016/j.peva.2005.05.003.
    [18] 朱轶, 糜正琨, 王文鼐. 一种基于内容流行度的内容中心网络缓存概率置换策略[J]. 电子与信息学报, 2013, 35(6): 1305-1310. doi: 10.3724/SP.J.1146.2012.01143.(查阅网上资料,DOI打不开,请确认).

    ZHU Yi, MI Zhengkun, WANG Wennai. A cache probability replacement policy based on content popularity in content centric networks[J]. Journal of Electronics & Information Technology, 2013, 35(6): 1305–1310. doi: 10.3724/sp.j.1146.2012.01143.
    [19] AMADEO M, CAMPOLO C, RUGGERI G, et al. Popularity-aware closeness based caching in NDN edge networks[J]. Sensors, 2022, 22(9): 3460. doi: 10.3390/s22093460.
    [20] HUBBALLI N, CHAUDHARY P, and KULKARNI S G. PePC: Popularity based early predictive caching in named data networks[C]. Proceedings of the 2024 IEEE 21st Consumer Communications & Networking Conference, Las Vegas, USA, 2024: 478–483. doi: 10.1109/CCNC51664.2024.10454826.
    [21] KUMARI M K, TRIPATHI N, and JOSHI P. ProxaDyn: A proximity-aware dynamic caching approach for named data networks[J]. IEEE Transactions on Network Science and Engineering, 2025, 12(3): 2360–2372. doi: 10.1109/TNSE.2025.3547424.
    [22] HOU Jiacheng, TAO Tianhao, LU Haoye, et al. Intelligent caching with graph neural network-based deep reinforcement learning on SDN-based ICN[J]. Future Internet, 2023, 15(8): 251. doi: 10.3390/fi15080251.
    [23] LIU Shuaijun, HU Xin, WANG Yipeng, et al. Distributed caching based on matching game in LEO satellite constellation networks[J]. IEEE Communications Letters, 2018, 22(2): 300–303. doi: 10.1109/lcomm.2017.2771434.
    [24] YANG Zhihua, LI Yue, YUAN Peng, et al. TCSC: A novel file distribution strategy in integrated LEO satellite-terrestrial networks[J]. IEEE Transactions on Vehicular Technology, 2020, 69(5): 5426–5441. doi: 10.1109/tvt.2020.2979692.
    [25] TANG Jin, LI Jian, ZHANG Lan, et al. Opportunistic content-aware routing in satellite-terrestrial integrated networks[J]. IEEE Transactions on Mobile Computing, 2024, 23(11): 10460–10474. doi: 10.1109/TMC.2024.3377729.
    [26] CHAUDHARY P and HUBBALLI N. PeNCache: Popularity based cooperative caching in named data networks[J]. Computer Networks, 2025, 257: 110995. doi: 10.1016/j.comnet.2024.110995.
    [27] XU Rui, DI Xiaoqiang, CHEN Jing, et al. A hybrid caching strategy for information-centric satellite networks based on node classification and popular content awareness[J]. Computer Communications, 2023, 197: 186–198. doi: 10.1016/j.comcom.2022.10.025.
    [28] TANG Jin, LI Jian, CHEN Xianhao, et al. Cooperative caching in satellite-terrestrial integrated networks: A region features aware approach[J]. IEEE Transactions on Vehicular Technology, 2024, 73(7): 10602–10616. doi: 10.1109/TVT.2024.3369106.
    [29] JIANG Weiwei, ZHAN Yafeng, and FANG Xin. Satellite edge computing for mobile multimedia communications: A multi-agent federated reinforcement learning approach[J]. ACM Transactions on Autonomous and Adaptive Systems, 2025. doi: 10.1145/3715146.
    [30] PAN Rong, NATARAJAN P, PIGLIONE C, et al. PIE: A lightweight control scheme to address the bufferbloat problem[C]. Proceedings of the 2013 IEEE 14th International Conference on High Performance Switching and Routing, Taipei, China, 2013: 148–155. doi: 10.1109/HPSR.2013.6602305.
    [31] GOIAN H S, AL-JARRAH O Y, MUHAIDAT S, et al. Popularity-based video caching techniques for cache-enabled networks: A survey[J]. IEEE Access, 2019, 7: 27699–27719. doi: 10.1109/access.2019.2898734.
    [32] AMADEO M, RUGGERI G, CAMPOLO C, et al. Caching popular and fresh IoT contents at the edge via named data networking[C]. Proceedings of IEEE Conference on Computer Communications Workshops, Toronto, Canada, 2020: 610–615. doi: 10.1109/INFOCOMWKSHPS50562.2020.9162741.
    [33] 朱玉峰. 命名数据网络中网内计算服务缓存放置与转发策略研究[D]. [硕士论文], 华中科技大学, 2022. doi: 10.27157/d.cnki.ghzku.2022.002150.

    ZHU Yufeng. Research on services cache placement and forwarding strategy of in-network computing in named data networking[D]. [Master dissertation], Huazhong University of Science and Technology, 2022. doi: 10.27157/d.cnki.ghzku.2022.002150.
    [34] PFENDER J, VALERA A, and SEAH W K G. Performance comparison of caching strategies for information-centric IoT[C]. Proceedings of the 5th ACM Conference on Information-Centric Networking, Boston, USA, 2018: 43–53. doi: 10.1145/3267955.3267966.
    [35] HEROUALA A T, ZIANI B, KERRACHE C A, et al. CaDaCa: A new caching strategy in NDN using data categorization[J]. Multimedia Systems, 2023, 29(5): 2935–2950. doi: 10.1007/s00530-022-00904-y.
    [36] ABO-ZEED M, DIN J B, SHAYEA I, et al. Survey on land mobile satellite system: Challenges and future research trends[J]. IEEE Access, 2019, 7: 137291–137304. doi: 10.1109/ACCESS.2019.2941900.
    [37] BRESLAU L, CAO Pei, FAN Li, et al. Web caching and Zipf-like distributions: Evidence and implications[C]. Proceedings of IEEE INFOCOM '99. Conference on Computer Communications. Proceedings. Eighteenth Annual Joint Conference of the IEEE Computer and Communications Societies. The Future is Now (Cat. No. 99CH36320), New York, USA, 1999: 126–134. doi: 10.1109/INFCOM.1999.749260.(查阅网上资料,未能确认母体文献标题信息,请确认).
    [38] 徐昌彪, 王华. CCN中基于内容流行度和节点重要度的缓存设计[J]. 电子技术应用, 2017, 43(3): 100–103. doi: 10.16157/j.issn.0258-7998.2017.03.025.

    XU Changbiao and WANG Hua. Popularity and betweenness based caching scheme in CCN[J]. Application of Electronic Technique, 2017, 43(3): 100–103. doi: 10.16157/j.issn.0258-7998.2017.03.025.
    [39] HEROUALA A T, ZIANI B, KERRACHE C A, et al. CaDaCa: A new caching strategy in NDN using data categorization[J]. Multimedia Systems, 2023, 29(5): 2935–2950. doi: 10.1007/s00530-022-00904-y.(查阅网上资料, 本条文献和第35条文献重复,请核对).
    [40] 李庆敏, 高全力, 王西汉, 等. 命名数据网络中缓存优化策略的研究[J]. 计算机与数字工程, 2022, 50(9): 1991–1997. doi: 10.3969/j.issn.1672-9722.2022.09.022.

    LI Qingmin, GAO Quanli, WANG Xihan, et al. Research on cache optimization strategies in named data networks[J]. Computer and Digital Engineering, 2022, 50(9): 1991–1997. doi: 10.3969/j.issn.1672-9722.2022.09.022.
  • 加载中
图(10) / 表(2)
计量
  • 文章访问数:  11
  • HTML全文浏览量:  8
  • PDF下载量:  1
  • 被引次数: 0
出版历程
  • 收稿日期:  2025-07-16
  • 修回日期:  2025-10-27
  • 网络出版日期:  2025-10-31

目录

    /

    返回文章
    返回