高级搜索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

无蜂窝大规模MIMO系统中下行短包传输的叠加导频功率分配

沈璐瑶 周星光 许子乐 王一航 夏文超 朱洪波

沈璐瑶, 周星光, 许子乐, 王一航, 夏文超, 朱洪波. 无蜂窝大规模MIMO系统中下行短包传输的叠加导频功率分配[J]. 电子与信息学报. doi: 10.11999/JEIT250655
引用本文: 沈璐瑶, 周星光, 许子乐, 王一航, 夏文超, 朱洪波. 无蜂窝大规模MIMO系统中下行短包传输的叠加导频功率分配[J]. 电子与信息学报. doi: 10.11999/JEIT250655
SHEN Luyao, ZHOU Xingguang, XIA Wenchao, ZHU Hongbo, . Power Allocation for Downlink Short Packet Transmission with Superimposed Pilots in Cell-free Massive MIMO[J]. Journal of Electronics & Information Technology. doi: 10.11999/JEIT250655
Citation: SHEN Luyao, ZHOU Xingguang, XIA Wenchao, ZHU Hongbo, . Power Allocation for Downlink Short Packet Transmission with Superimposed Pilots in Cell-free Massive MIMO[J]. Journal of Electronics & Information Technology. doi: 10.11999/JEIT250655

无蜂窝大规模MIMO系统中下行短包传输的叠加导频功率分配

doi: 10.11999/JEIT250655 cstr: 32379.14.JEIT250655
基金项目: 江苏省科技重大专项计划项目(XXX),国家自然科学基金青年基金项目(62201285),青年人才托举工程(2022QNRC001)
详细信息
    作者简介:

    沈璐瑶:女,研究方向为短包传输、叠加导频

    周星光:男,博士,研究方向为超可靠低时延通信、短包传输、大规模MIMO、信道估计理论

    许子乐:女,研究方向为智能反射面,短包通信等

    王一航:男,研究方向为无蜂窝网络

    夏文超:男,博士,副教授,研究方向为边缘智能无线通信、通感一体化、大规模MIMO等

    朱洪波:男,博士,教授,研究方向为无线通信与物联网、下一代网络、无线通信与电磁兼容

    通讯作者:

    夏文超 xiawenchao@njupt.edu.cn

  • 中图分类号: TN929.5

Power Allocation for Downlink Short Packet Transmission with Superimposed Pilots in Cell-free Massive MIMO

Funds: the National Science and Technology Major Project of the Ministry of Science and Technology of Jiangsu Province(XXX), the National Natural Science Foundation for Young Scientists of China(62201285), Young Elite Scientists Sponsorship Program(2022QNRC001)
  • 摘要: 无蜂窝大规模多输入多输出(Cell-free massive Multiple-input Multiple-output, CF-mMIMO)系统需要支持大量用户接入,这使得信道估计变得更加复杂。基于常规导频配置的信道估计方法占用较大开销,使得数据传输可用符号大大减少,导致传输速率下降,该问题在短包传输场景中尤为明显。对此,该文研究了CF-mMIMO系统中基于叠加导频(Superimposed Pilots, SP)的下行短包传输方案。首先,基于最大比传输预编码方案,在非完美信道状态信息下推导了下行可达速率的闭式表达式。为了减小SP配置下导频与数据之间的干扰,进一步提出了基于几何规划和连续凸近似的迭代优化算法,以优化导频和数据间的功率分配。最后,仿真结果验证了下行可达速率闭式表达式的正确性,并表明所提的SP功率优化算法能够显著提高短包传输性能。
  • 图  1  以用户为中心的CF-mMIMO 系统

    图  2  和速率模拟式与解析式的比较

    图  3  和速率与AP天线数的关系

    图  4  和速率与UE数的关系

    图  5  和速率与块长的关系

    图  6  和速率与解码错误概率的关系

    表  1  仿真参数

    参数设置 数值 参数设置 数值
    载波频率$f$ 2.1 GHz 噪声功率谱密度 –174 dBm/Hz
    信道带宽$B$ 20 MHz 解码错误概率$ \epsilon $ 10–9
    ${h_{UE}}$ 1.5 m 上行链路功率限制${P^{ul}}$ 50 mW
    ${h_{AP}}$ 15m 下行链路功率限制${P^{dl}}$ 500 mW
    ${d_0}$ 10 m 上行链路块长${\tau _{ul}}$ 100
    ${d_1}$ 50 m 下行链路块长${\tau _{dl}}$ 100
    最小速率限制${R^{req}}$ 1 bit/s/Hz RP导频长度${\tau _p}$ 10
    AP选择系数$\lambda $ 0.99 AP数M 5
    每个AP的天线数N 100 UE数K 10
    下载: 导出CSV
  • [1] BHUSHAN N, LI Junyi, MALLADI D, et al. Network densification: The dominant theme for wireless evolution into 5G[J]. IEEE Communications Magazine, 2014, 52(2): 82–89. doi: 10.1109/MCOM.2014.6736747.
    [2] KAMEL M, HAMOUDA W, and YOUSSEF A. Ultra-dense networks: A survey[J]. IEEE Communications Surveys & Tutorials, 2016, 18(4): 2522–2545. doi: 10.1109/COMST.2016.2571730.
    [3] ZHANG Zijian and DAI Linglong. A joint precoding framework for wideband reconfigurable intelligent surface-aided cell-free network[J]. IEEE Transactions on Signal Processing, 2021, 69: 4085–4101. doi: 10.1109/TSP.2021.3088755.
    [4] 俞观晔, 于佳, 陈沛, 等. 基于RIS辅助的RSMA无蜂窝上行通信系统和速率优化算法[J]. 南京邮电大学学报: 自然科学版, 2025, 45(5): 31–41. doi: 10.14132/j.cnki.1673-5439.2025.05.004.

    YU Guanye, YU Jia, CHEN Pei, et al. Sum-rate optimization for RIS-aided cell-free uplink communication systems with RSMA[J]. Journal of Nanjing University of Posts and Telecommunications: Natural Science, 2025, 45(5): 31–41. doi: 10.14132/j.cnki.1673-5439.2025.05.004.
    [5] 张广阳, 甄若亦, 李宇航, 等. RIS辅助的去蜂窝网络前传压缩与混合预编码设计[J/OL]. 物联网学报. https://link.cnki.net/urlid/10.1491.tp.20250425.1809.010, 2025.

    ZHANG Guangyang, ZHEN Ruoyi, LI Yuhang, et al. Fronthaul compression and hybrid precoding design for RIS-aidedcell-free networks[J/OL]. Chinese Journal on Internet of Things. https://link.cnki.net/urlid/10.1491.tp.20250425.1809.010, 2025.
    [6] BJÖRNSON E and SANGUINETTI L. Making cell-free massive MIMO competitive with MMSE processing and centralized implementation[J]. IEEE Transactions on Wireless Communications, 2020, 19(1): 77–90. doi: 10.1109/TWC.2019.2941478.
    [7] NAYEBI E, ASHIKHMIN A, MARZETTA T L, et al. Precoding and power optimization in cell-free massive MIMO systems[J]. IEEE Transactions on Wireless Communications, 2017, 16(7): 4445–4459. doi: 10.1109/TWC.2017.2698449.
    [8] HAN Tianyu, ZHU Yongxu, WONG K K, et al. Cell-free fluid antenna multiple access networks[J]. IEEE Transactions on Wireless Communications, 2025, 24(9): 7237–7251. doi: 10.1109/TWC.2025.3559441.
    [9] BUZZI S and D’ANDREA C. Cell-free massive MIMO: User-centric approach[J]. IEEE Wireless Communications Letters, 2017, 6(6): 706–709. doi: 10.1109/LWC.2017.2734893.
    [10] WEI Chen, XU Kui, XIA Xiaochen, et al. User-centric access point selection in cell-free massive MIMO systems: A game-theoretic approach[J]. IEEE Communications Letters, 2022, 26(9): 2225–2229. doi: 10.1109/LCOMM.2022.3186350.
    [11] HARITHA H, AMUDALA D N, BUDHIRAJA R, et al. Superimposed versus regular pilots for hardware impaired Rician-faded cell-free massive MIMO systems[J]. IEEE Transactions on Communications, 2024, 72(11): 6688–6706. doi: 10.1109/TCOMM.2024.3392780.
    [12] ZHANG Yao, QIAO Xu, YANG Longxiang, et al. Superimposed pilots are beneficial for mitigating pilot contamination in cell-free massive MIMO[J]. IEEE Communications Letters, 2021, 25(1): 279–283. doi: 10.1109/LCOMM.2020.3024705.
    [13] ZHANG Yao, ZHAO Haitao, XIA Wenchao, et al. Wireless-powered cell-free massive MIMO with superimposed pilot transmission[J]. IEEE Communications Letters, 2022, 26(7): 1688–1692. doi: 10.1109/LCOMM.2022.3169282.
    [14] HARITHA H, AMUDALA D N, BUDHIRAJA R, et al. Superimposed versus regular pilots for hardware impaired Rician-faded cell-free massive MIMO systems[J]. IEEE Transactions on Communications, 2024, 72(11): 6688–6706. doi: 10.1109/TCOMM.2024.3392780. .
    [15] SUN Qiang, ZHOU Yu, SHEN Yushi, et al. Uplink performance of cell-free symbiotic radio with hardware impairments for IoT[J]. IEEE Internet of Things Journal, 2025, 12(13): 23418–23433. doi: 10.1109/JIOT.2025.3551768.
    [16] KIM D, VAN DER PERRE L, and CHOI W. Weighted-sum energy efficiency maximization in user-centric uplink cell-free massive MIMO[EB/OL]. https://arxiv.org/abs/2502.06211, 2025.
    [17] PENG Qihao, REN Hong, PAN Cunhua, et al. Resource allocation for cell-free massive MIMO-enabled URLLC downlink systems[J]. IEEE Transactions on Vehicular Technology, 2023, 72(6): 7669–7684. doi: 10.1109/TVT.2023.3243571.
    [18] POLYANSKIY Y, POOR H V, and VERDU S. Channel coding rate in the finite blocklength regime[J]. IEEE Transactions on Information Theory, 2010, 56(5): 2307–2359. doi: 10.1109/TIT.2010.2043769.
    [19] REN Hong, PAN Cunhua, DENG Yansha, et al. Joint pilot and payload power allocation for massive-MIMO-enabled URLLC IIoT networks[J]. IEEE Journal on Selected Areas in Communications, 2020, 38(5): 816–830. doi: 10.1109/JSAC.2020.2980910.
    [20] CHIANG M, TAN C W, PALOMAR D P, et al. Power control by geometric programming[J]. IEEE Transactions on Wireless Communications, 2007, 6(7): 2640–2651. doi: 10.1109/TWC.2007.05960.
    [21] MOBINI Z, NGO H Q, MATTHAIOU M, et al. Cell-free massive MIMO surveillance of multiple untrusted communication links[J]. IEEE Internet of Things Journal, 2024, 11(20): 33010–33026. doi: 10.1109/JIOT.2024.3422676.
  • 加载中
图(6) / 表(1)
计量
  • 文章访问数:  33
  • HTML全文浏览量:  14
  • PDF下载量:  7
  • 被引次数: 0
出版历程
  • 收稿日期:  2025-07-11
  • 修回日期:  2025-11-03
  • 录用日期:  2025-11-03
  • 网络出版日期:  2025-11-12

目录

    /

    返回文章
    返回