高级搜索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

多接入边缘计算网络中动态资源感知与任务卸载方案设计

张冰雪 李希胜 尤佳

张冰雪, 李希胜, 尤佳. 多接入边缘计算网络中动态资源感知与任务卸载方案设计[J]. 电子与信息学报. doi: 10.11999/JEIT250640
引用本文: 张冰雪, 李希胜, 尤佳. 多接入边缘计算网络中动态资源感知与任务卸载方案设计[J]. 电子与信息学报. doi: 10.11999/JEIT250640
ZHANG Bingxue, LI Xisheng, YOU Jia. Design of Dynamic Resource Awareness and Task Offloading Schemes in Multi-Access Edge Computing Networks[J]. Journal of Electronics & Information Technology. doi: 10.11999/JEIT250640
Citation: ZHANG Bingxue, LI Xisheng, YOU Jia. Design of Dynamic Resource Awareness and Task Offloading Schemes in Multi-Access Edge Computing Networks[J]. Journal of Electronics & Information Technology. doi: 10.11999/JEIT250640

多接入边缘计算网络中动态资源感知与任务卸载方案设计

doi: 10.11999/JEIT250640 cstr: 32379.14.JEIT250640
基金项目: 国家重点研发计划(2019YFB2101900)
详细信息
    作者简介:

    张冰雪:女,博士研究生,研究方向为物联网与边缘计算、任务卸载与资源调度

    李希胜:男,教授,博士,研究方向为先进传感技术、多传感器信息融合等

    尤佳:女,副教授,硕士,研究方向为物联网与边缘计算、智能感知等

    通讯作者:

    李希胜 lxs@ustb.edu.cn

  • 中图分类号: TP393

Design of Dynamic Resource Awareness and Task Offloading Schemes in Multi-Access Edge Computing Networks

Funds: National Key Research and Development Program of China(2019YFB2101900)
  • 摘要: 工业物联网中,多模终端应用需求的复杂和多样性对使用边缘计算卸载任务提出了更高的要求。多接入边缘计算网络的灵活切换为多模终端应用提供了更高效任务处理方案的机会,如何在工业无线局域网与5G公网协作系统中,在异构网络资源分配约束下,设计网络选择机制,以及使用公网资源的额外成本开销条件下,用户任务卸载方案制定,成为降低用户任务执行成本,提高任务卸载量与执行效率的关键挑战。该文研究了面向多模终端的多接入边缘计算网络中,任务卸载与网络选择的联合优化问题,建立了基于拍卖模型的系统成本优化模型,根据异构网络通信资源与边缘服务器计算资源的动态分配变化,提出了基于拍卖机制的动态资源感知与任务卸载算法,设计终端用户任务卸载机制与异构网络节点匹配,最小化系统成本开销,提高任务执行效率及用户服务体验。通过仿真实验证明,该算法机制对比基准算法能够降低至少5–15%系统成本开销,并能够平均提高10%的任务卸载数据量比例,有效提高多模终端任务处理效率。
  • 图  1  面向多模终端的多接入边缘计算网络架构

    图  2  组合双向拍卖算法示意图

    图  3  不同多模终端规模下的系统总成本

    图  4  工业无线局域网服务器数量与任务量对工业无线局域网卸载量的影响

    图  5  工业无线局域网服务器数量及任务量对5G公网卸载量的影响

    图  6  5G公网服务器数量及任务量对工业无线局域网卸载量的影响

    图  7  5G公网服务器数量对选择卸载到5G公网数据量的影响

    图  8  5G公网服务器数量对选择卸载到工业无线局域网数据量的影响

    图  9  通信资源成本参数对选择卸载到5G公网数据量的比例变化

  • [1] SHI Weisong, CAO Jie, ZHANG Quan, et al. Edge computing: Vision and challenges[J]. IEEE Internet of Things Journal, 2016, 3(5): 637–646. doi: 10.1109/jiot.2016.2579198.
    [2] LIANG Gen, YU Hewei, GUO Xiaoxue, et al. Joint access selection and bandwidth allocation algorithm supporting user requirements and preferences in heterogeneous wireless networks[J]. IEEE Access, 2019, 7: 23914–23929. doi: 10.1109/ACCESS.2019.2899405.
    [3] ZHU Yun, LI Jiade, HUANG Qiuyuan, et al. Game theoretic approach for network access control in heterogeneous networks[J]. IEEE Transactions on Vehicular Technology, 2018, 67(10): 9856–9866. doi: 10.1109/TVT.2018.2856752.
    [4] CUI Jianhua, WU Ducheng, and QIN Zhiqiang. Caching AP selection and channel allocation in wireless caching networks: A binary concurrent interference minimizing game solution[J]. IEEE Access, 2018, 6: 54516–54526. doi: 10.1109/ACCESS.2018.2871142.
    [5] TONG Haonan, WANG Tao, ZHU Yujiao, et al. Mobility-aware seamless handover with MPTCP in software-defined HetNets[J]. IEEE Transactions on Network and Service Management, 2021, 18(1): 498–510. doi: 10.1109/TNSM.2021.3050627.
    [6] MONTALBAN J, MUNTEAN G M, and ANGUEIRA P. A utility-based framework for performance and energy-aware convergence in 5G heterogeneous network environments[J]. IEEE Transactions on Broadcasting, 2020, 66(2): 589–599. doi: 10.1109/TBC.2020.2986925.
    [7] ZHU Anqi, GUO Songtao, LIU Bei, et al. Adaptive multiservice heterogeneous network selection scheme in mobile edge computing[J]. IEEE Internet of Things Journal, 2019, 6(4): 6862–6875. doi: 10.1109/JIOT.2019.2912155.
    [8] PORNCHALERMPONG N, BURANAPANICHKIT D, and THONGNOO K. Mobile network selection algorithm based on max-min fairness for dynamic weights[C]. 2017 14th International Conference on Electrical Engineering/Electronics, Computer, Telecommunications and Information Technology, Phuket, Thailand, 2017: 549–552. doi: 10.1109/ECTICon.2017.8096296.
    [9] YU Hewei, MA Yanan, and YU Jingxi. Network selection algorithm for multiservice multimode terminals in heterogeneous wireless networks[J]. IEEE Access, 2019, 7: 46240–46260. doi: 10.1109/ACCESS.2019.2908764.
    [10] KHAN M S, UD DIN I, ALMOGREN A, et al. AI-enhanced secure decision-making in ultra-dense 6G networks: An optimized context-aware multi-attribute utility function[J]. IEEE Transactions on Consumer Electronics, 2024, 70(3): 5729–5736. doi: 10.1109/TCE.2024.3385828.
    [11] ADHYAPOK S, BHUYAN B, SHARMA U, et al. Analytic hierarchy process based medium access control protocol for multi channel wireless sensor networks[C]. 2023 OITS International Conference on Information Technology, Raipur, India, 2023: 491–495. doi: 10.1109/OCIT59427.2023.10431210.
    [12] XU Yan, GAO Zhijun, and ZHANG Sichao. Industrial wireless network access selection based on multilevel fuzzy neural network[C]. 2024 36th Chinese Control and Decision Conference, Xi’an, China, 2024: 6222–6227. doi: 10.1109/CCDC62350.2024.10587942.
    [13] SALIH Y K, SEE O H, and IBRAHIM R W. An intelligent selection method based on game theory in heterogeneous wireless networks[J]. Transactions on Emerging Telecommunications Technologies, 2016, 27(12): 1641–1652. doi: 10.1002/ett.3102.
    [14] FAN Wenhao, HAN Junting, SU Yi, et al. Joint task offloading and service caching for multi-access edge computing in WiFi-cellular heterogeneous networks[J]. IEEE Transactions on Wireless Communications, 2022, 21(11): 9653–9667. doi: 10.1109/TWC.2022.3178541.
    [15] MA Mulei, GONG Chenyu, ZENG Liekang, et al. MOGR: Multi-task offloading via graph representation in heterogeneous computing network[C]. IEEE International Conference on Communications, Denver, USA, 2024: 1237–1242. doi: 10.1109/ICC51166.2024.10622588.
    [16] SUN Yang, BIAN Yuwei, LI Huixin, et al. Flexible offloading and task scheduling for IoT applications in dynamic multi-access edge computing environments[J]. Symmetry, 2023, 15(12): 2196. doi: 10.3390/sym15122196.
    [17] YU Jiguo, LIU Shun, ZOU Yifei, et al. Auction theory and game theory based pricing of edge computing resources: A survey[J]. IEEE Internet of Things Journal, 2025, 12(16): 32394–32418. doi: 10.1109/JIOT.2025.3565539.
    [18] LI Yupeng, XIA Mengjia, DUAN Jingpu, et al. Pricing-based resource allocation in three-tier edge computing for social welfare maximization[J]. Computer Networks, 2022, 217: 109311. doi: 10.1016/j.comnet.2022.109311.
    [19] TANG Zhiqing, ZHANG Fuming, ZHOU Xiaojie, et al. Pricing model for dynamic resource overbooking in edge computing[J]. IEEE Transactions on Cloud Computing, 2023, 11(2): 1970–1984. doi: 10.1109/TCC.2022.3175610.
    [20] GU Huixian, ZHAO Liqiang, HAN Zhu, et al. AI-enhanced cloud-edge-terminal collaborative network: Survey, applications, and future directions[J]. IEEE Communications Surveys & Tutorials, 2024, 26(2): 1322–1385. doi: 10.1109/COMST.2023.3338153.
    [21] FAN Wenhao, HUA Mingyu, ZHANG Yaoyin, et al. Game-based task offloading and resource allocation for vehicular edge computing with edge-edge cooperation[J]. IEEE Transactions on Vehicular Technology, 2023, 72(6): 7857–7870. doi: 10.1109/TVT.2023.3241286.
    [22] WANG Yanting, SHENG Min, WANG Xijun, et al. Mobile-edge computing: Partial computation offloading using dynamic voltage scaling[J]. IEEE Transactions on Communications, 2016, 64(10): 4268–4282. doi: 10.1109/TCOMM.2016.2599530.
    [23] NUJHAT N, HAQUE SHANTA F, SARKER S, et al. Task offloading exploiting grey wolf optimization in collaborative edge computing[J]. Journal of Cloud Computing, 2024, 13(1): 23. doi: 10.1186/s13677-023-00570-z.
    [24] SUN Wen, LIU Jiajia, YUE Yanlin, et al. Double auction-based resource allocation for mobile edge computing in industrial internet of things[J]. IEEE Transactions on Industrial Informatics, 2018, 14(10): 4692–4701. doi: 10.1109/TII.2018.2855746.
    [25] MA Lianbo, WANG Xueyi, WANG Xingwei, et al. TCDA: Truthful combinatorial double auctions for mobile edge computing in industrial internet of things[J]. IEEE Transactions on Mobile Computing, 2022, 21(11): 4125–4138. doi: 10.1109/TMC.2021.3064314.
    [26] KANG Hong, LI Minghao, LIN Lehao, et al. Bridging incentives and dependencies: An iterative combinatorial auction approach to dependency-aware offloading in mobile edge computing[J]. IEEE Transactions on Mobile Computing, 2024, 23(12): 12113–12130. doi: 10.1109/TMC.2024.3407958.
    [27] YOUNIS A, MAHESHWARI S, and POMPILI D. Energy-latency computation offloading and approximate computing in mobile-edge computing networks[J]. IEEE Transactions on Network and Service Management, 2024, 21(3): 3401–3415. doi: 10.1109/TNSM.2024.3360850.
    [28] WU Liantao, SUN Peng, WANG Zhibo, et al. Computation offloading in multi-cell networks with collaborative edge-cloud computing: A game theoretic approach[J]. IEEE Transactions on Mobile Computing, 2024, 23(3): 2093–2106. doi: 10.1109/TMC.2023.3246462.
  • 加载中
图(9)
计量
  • 文章访问数:  35
  • HTML全文浏览量:  17
  • PDF下载量:  3
  • 被引次数: 0
出版历程
  • 修回日期:  2025-12-29
  • 录用日期:  2025-12-29
  • 网络出版日期:  2026-01-08

目录

    /

    返回文章
    返回