高级搜索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

双域多尺度状态空间网络下的口腔颌面全景X射线图像分割算法研究

李冰 胡伟杰 刘侠

李冰, 胡伟杰, 刘侠. 双域多尺度状态空间网络下的口腔颌面全景X射线图像分割算法研究[J]. 电子与信息学报. doi: 10.11999/JEIT250639
引用本文: 李冰, 胡伟杰, 刘侠. 双域多尺度状态空间网络下的口腔颌面全景X射线图像分割算法研究[J]. 电子与信息学报. doi: 10.11999/JEIT250639
LI Bing, HU Weijie, LIU Xia. Research on Segmentation Algorithm of Oral and Maxillofacial Panoramic X-ray Images under Dual-domain Multiscale State Space Network[J]. Journal of Electronics & Information Technology. doi: 10.11999/JEIT250639
Citation: LI Bing, HU Weijie, LIU Xia. Research on Segmentation Algorithm of Oral and Maxillofacial Panoramic X-ray Images under Dual-domain Multiscale State Space Network[J]. Journal of Electronics & Information Technology. doi: 10.11999/JEIT250639

双域多尺度状态空间网络下的口腔颌面全景X射线图像分割算法研究

doi: 10.11999/JEIT250639 cstr: 32379.14.JEIT250639
基金项目: 国家自然科学基金面上项目(61672197),黑龙江省自然科学基金项目(LH00F035)
详细信息
    作者简介:

    李冰:女,博士,教授,研究方向为医学图像处理与分析,网络控制系统分析与综合

    胡伟杰:女,硕士生,研究方向为医学图像处理与分析、模式识别

    刘侠:男,博士,教授,研究方向为医学图像处理、模式识别、机器学习

    通讯作者:

    胡伟杰 huweijie0917@163.com

  • 中图分类号: TP391.4; TP751; TP317.4

Research on Segmentation Algorithm of Oral and Maxillofacial Panoramic X-ray Images under Dual-domain Multiscale State Space Network

Funds: The National Natural Science Foundation of China (61172167), Heilongjiang Provincial Natural Science Foundation Project (LH00F035)
  • 摘要: 针对口腔颌面全景X射线图像中存在的形态变异显著、牙体-牙龈边界模糊以及牙周组织灰度值重叠等问题,该研究提出基于双域多尺度状态空间网络的口腔颌面全景X射线图像分割算法。空间域利用视觉状态空间块建立牙弓动态传播模型,并利用微分方程实现跨象限长程关联捕捉。特征域构建可变形多尺度注意力金字塔,并利用通道-空间注意力动态加权关键解剖标志的灰度渐变特征,解析牙体-牙龈模糊边界。双域特征进一步通过三重注意力融合机制,强化解剖标注的语义表达。实验表明,该算法在颌面全景X射线图像分割任务中取得显著效果,戴斯系数(Dice)达93.8%,豪斯多夫距离(HD95)为18.73像素,充分验证了算法的有效性。
  • 图  1  双域多尺度状态空间网络

    图  3  选择性扫描模块工作机制

    图  2  视觉状态空间块

    图  4  可变形多尺度注意力金字塔

    图  5  空间与通道注意力协同模块

    图  6  三重注意力融合机制

    图  7  口腔颌面全景X射线数据集

    图  8  消融实验结果图

    图  9  常规场景与挑战性场景下的分割效果

    图  10  各网络分割效果对比

    图  11  各网络指标对比

    表  1  消融实验指标对比

    Dice(%)HD95Accuracy(%)Recall(%)Precision(%)模型大小/MB参数量/M
    baseline88.1721.7093.0387.9786.7384.2493.19
    baseline_A89.4122.0193.6788.2487.0779.2388.43
    baseline_B89.1622.1093.7488.3287.4281.1589.16
    baseline_C89.7321.5393.8688.8787.1378.5985.63
    baseline_AB91.3220.7194.0789.0387.2682.1591.52
    baseline_AC91.2419.8294.2089.2487.3483.4192.31
    baseline_BC91.5319.7794.1389.3787.4281.6890.74
    Ours93.8618.7394.5790.4688.0381.2390.10
    下载: 导出CSV

    表  2  对比实验指标对比

    模型名称 Dice (%) HD95 (mm) Accuracy (%) Recall (%) Precision (%) 模型大小 (MB) 参数量 (M) GFlops (G) FPS
    TransUnet 91.43 24.13 92.02 88.76 86.31 82.14 88.52 29.34 18.24
    Swin-Unet 89.03 24.63 92.63 89.13 86.81 84.61 92.31 40.93 11.47
    VM-Unet 89.63 23.07 93.08 89.47 87.23 83.15 90.74 6.87 34.71
    DA-TransUnet 91.25 20.29 93.24 89.73 87.78 87.78 80.63 31.42 16.87
    Ege-Unet 88.18 32.64 92.57 86.93 86.04 52.87 61.91 13.73 27.38
    TinyU-Net 86.27 35.83 91.74 86.02 85.94 48.65 58.31 4.18 45.63
    SAMUS 88.51 31.83 95.02 88.83 86. 57 162.17 183.19 51.62 4.53
    0urs 93.86 18.73 94.30 90.46 88.03 81.23 90.10 24.93 22.14
    下载: 导出CSV
  • [1] RUAN Jiacheng, XIE Mingye, GAO Jingsheng, et al. EGE-UNet: An efficient group enhanced UNet for skin lesion segmentation[C]. Proceedings of the 26th International Conference on Medical Image Computing and Computer Assisted Intervention, Vancouver, Canada: Springer, 2023: 481–490. doi: 10.1007/978-3-031-43901-8_46.
    [2] CHEN Junren, CHEN Rui, WANG Wei, et al. TinyU-Net: Lighter yet better U-Net with cascaded multi-receptive fields[C]. Proceedings of the 27th International Conference on Medical Image Computing and Computer Assisted Intervention, Marrakesh, Morocco: Springer, 2024: 626–635. doi: 10.1007/978-3-031-72114-4_60.
    [3] CAO Hu, WANG Yueyue, CHEN J, et al. Swin-Unet: Unet-like pure transformer for medical image segmentation[C]. Proceedings of the 17th European Conference on Computer Vision, Tel Aviv, Israel: Springer, 2023: 205–218. doi: 10.1007/978-3-031-25066-8_9.
    [4] CHEN Jieneng, LU Yongyi, YU Qihang, et al. TransUNet: Transformers make strong encoders for medical image segmentation[J]. arXiv preprint arXiv: 2102.04306, 2021. doi: 10.48550/arXiv.2102.04306. (查阅网上资料,不确定本条文献的格式和类型,请确认).
    [5] SUN Guanqun, PAN Yizhi, KONG Weikun, et al. DA-TransUNet: Integrating spatial and channel dual attention with transformer U-Net for medical image segmentation[J]. Frontiers in Bioengineering and Biotechnology, 2024, 12: 1398237. doi: 10.3389/fbioe.2024.1398237.
    [6] LEE H H, BAO Shunxing, HUO Yuankai, et al. 3D UX-Net: A large kernel volumetric convnet modernizing hierarchical transformer for medical image segmentation[C]. Proceedings of the 11th International Conference on Learning Representations, Kigali, Rwanda: ICLR, 2023.
    [7] ZHOU Hongyu, GUO Jiansen, ZHANG Yinghao, et al. nnFormer: Volumetric medical image segmentation via a 3D transformer[J]. IEEE Transactions on Image Processing, 2023, 32: 4036–4045. doi: 10.1109/TIP.2023.3293771.
    [8] HATAMIZADEH A, NATH V, TANG Yucheng, et al. Swin UNETR: Swin transformers for semantic segmentation of brain tumors in MRI images[C]. Proceedings of the 7th International Workshop on Brainlesion: Glioma, Multiple Sclerosis, Stroke and Traumatic Brain Injuries, Springer, 2021: 272–284. doi: 10.1007/978-3-031-08999-2_22. (查阅网上资料,未找到出版地信息,请确认).
    [9] GU A and DAO T. Mamba: Linear-time sequence modeling with selective state spaces[J]. arXiv preprint arXiv: 2312.00752, 2023. doi: 10.48550/arXiv.2312.00752. (查阅网上资料,不确定本条文献的格式和类型,请确认).
    [10] RUAN Jiacheng, LI Jincheng, and XIANG Suncheng. VM-UNet: Vision mamba UNet for medical image segmentation[J]. ACM Transactions on Multimedia Computing, Communications and Applications, 2025. doi: 10.1145/3767748. (查阅网上资料,未找到卷期页码信息,请确认).
    [11] HAO Jing, ZHU Yonghui, HE Lei, et al. T-Mamba: A unified framework with long-range dependency in dual-domain for 2D & 3D tooth segmentation[J]. arXiv preprint arXiv: 2404.01065, 2024. doi: 10.48550/arXiv.2404.01065. (查阅网上资料,不确定本条文献的格式和类型,请确认).
    [12] LIN Xian, XIANG Yangyang, YU Li, et al. Beyond adapting SAM: Towards end-to-end ultrasound image segmentation via auto prompting[C]. Proceedings of the 27th International Conference on Medical Image Computing and Computer Assisted Intervention, Marrakesh, Morocco: Springer, 2024: 24–34. doi: 10.1007/978-3-031-72111-3_3.
    [13] LIN P L, HUANG P Y, HUANG P W, et al. Teeth segmentation of dental periapical radiographs based on local singularity analysis[J]. Computer Methods and Programs in Biomedicine, 2014, 113(2): 433–445. doi: 10.1016/j.cmpb.2013.10.015.
    [14] MAHDI F P and KOBASHI S. Quantum particle swarm optimization for multilevel thresholding-based image segmentation on dental X-ray images[C]. Proceedings of the Joint 10th International Conference on Soft Computing and Intelligent Systems and 19th International Symposium on Advanced Intelligent Systems, Toyama, Japan: IEEE, 2018: 1148–1153. doi: 10.1109/SCIS-ISIS.2018.00181.
    [15] SON L H and TUAN T M. A cooperative semi-supervised fuzzy clustering framework for dental X-ray image segmentation[J]. Expert Systems with Applications, 2016, 46: 380–393. doi: 10.1016/j.eswa.2015.11.001.
    [16] PUSHPARAJ V, GURUNATHAN U, ARUMUGAM B, et al. An effective numbering and classification system for dental panoramic radiographs[C]. Proceedings of the 4th International Conference on Computing, Communications and Networking Technologies, Tiruchengode, India: IEEE, 2013: 1–8. doi: 10.1109/ICCCNT.2013.6726480.
    [17] ALSMADI M K. A hybrid Fuzzy C-Means and Neutrosophic for jaw lesions segmentation[J]. Ain Shams Engineering Journal, 2018, 9(4): 697–706. doi: 10.1016/j.asej.2016.03.016.
    [18] KOCH T L, PERSLEV M, IGEL C, et al. Accurate segmentation of dental panoramic radiographs with U-NETS[C]. Proceedings of the 2019 IEEE 16th International Symposium on Biomedical Imaging, Venice, Italy: IEEE, 2019: 15–19. doi: 10.1109/ISBI.2019.8759563.
    [19] ZANNAH R, BASHAR M, MUSHFIQ R B, et al. Semantic segmentation on panoramic dental X-ray images using U-Net architectures[J]. IEEE Access, 2024, 12: 44598–44612. doi: 10.1109/ACCESS.2024.3380027.
    [20] IMAK A, ÇELEBI A, POLAT O, et al. ResMIBCU-Net: An encoder–decoder network with residual blocks, modified inverted residual block, and bi-directional ConvLSTM for impacted tooth segmentation in panoramic X-ray images[J]. Oral Radiology, 2023, 39(4): 614–628. doi: 10.1007/s11282-023-00677-8.
    [21] LI Yunxiang, WANG Shuai, WANG Jun, et al. GT U-Net: A U-net like group transformer network for tooth root segmentation[C]. Proceedings of the Machine Learning in Medical Imaging: 12th International Workshop, Strasbourg, France: Springer, 2021: 386–395. doi: 10.1007/978-3-030-87589-3_40.
    [22] SHENG Chen, WANG Lin, HUANG Zhenhuan, et al. Transformer-based deep learning network for tooth segmentation on panoramic radiographs[J]. Journal of Systems Science and Complexity, 2023, 36(1): 257–272. doi: 10.1007/s11424-022-2057-9.
    [23] LI Pengcheng, GAO Chenqiang, LIAN Chunfeng, et al. Spatial prior-guided bi-directional cross-attention transformers for tooth instance segmentation[J]. IEEE Transactions on Medical Imaging, 2024, 43(11): 3936–3948. doi: 10.1109/TMI.2024.3406015.
    [24] LIU Yue, TIAN Yunjie, ZHAO Yuzhong, et al. VMamba: Visual state space model[C]. Proceedings of the 38th International Conference on Neural Information Processing Systems, Vancouver, Canada: Curran Associates Inc. , 2024: 3273.
    [25] HOWARD A G, ZHU Menglong, CHEN Bo, et al. MobileNets: Efficient convolutional neural networks for mobile vision applications[J]. arXiv preprint arXiv: 1704.04861, 2017. doi: 10.48550/arXiv.1704.04861. (查阅网上资料,不确定本条文献的格式和类型,请确认).
    [26] SI Yunzhong, XU Huiying, ZHU Xinzhong, et al. SCSA: Exploring the synergistic effects between spatial and channel attention[J]. Neurocomputing, 2025, 634: 129866. doi: 10.1016/j.neucom.2025.129866.
    [27] SUN Hongkun, XU Jing, and DUAN Yuping. ParaTransCNN: Parallelized transcnn encoder for medical image segmentation[J]. arXiv preprint arXiv: 2401.15307, 2024. doi: 10.48550/arXiv.2401.15307. (查阅网上资料,不确定本条文献的格式和类型,请确认).
  • 加载中
图(11) / 表(2)
计量
  • 文章访问数:  24
  • HTML全文浏览量:  11
  • PDF下载量:  4
  • 被引次数: 0
出版历程
  • 修回日期:  2025-12-22
  • 录用日期:  2025-12-22
  • 网络出版日期:  2025-12-29

目录

    /

    返回文章
    返回