高级搜索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

自供能智能超表面可靠安全通信策略与性能分析

屈亚运 曹堃锐 王骥 徐勇军 陈京渝 丁海洋 金梁

屈亚运, 曹堃锐, 王骥, 徐勇军, 陈京渝, 丁海洋, 金梁. 自供能智能超表面可靠安全通信策略与性能分析[J]. 电子与信息学报. doi: 10.11999/JEIT250637
引用本文: 屈亚运, 曹堃锐, 王骥, 徐勇军, 陈京渝, 丁海洋, 金梁. 自供能智能超表面可靠安全通信策略与性能分析[J]. 电子与信息学报. doi: 10.11999/JEIT250637

自供能智能超表面可靠安全通信策略与性能分析

doi: 10.11999/JEIT250637 cstr: 32379.14.JEIT250637
基金项目: 国家自然科学基金(No. 62101560),湖北省自然科学基金(No. 2025AFB943)
详细信息
    作者简介:

    屈亚运:男,讲师,研究方向为智能超表面、物理层安全等

    曹堃锐:男,副教授,研究方向为智能超表面、物理层安全等

    王骥:男,副教授,研究方向为超大规模MIMO、智能通信等

    徐勇军:男,教授,博士生导师,研究方向为反向散射通信、智能反射表面、通感一体化等

    陈京渝:男,硕士生,研究方向为智能超表面、物理层安全等

    丁海洋:男,教授,博士生导师,研究方向为无线通信系统设计与性能分析、智能超材料、无线携能通信等

    金梁:男,教授,博士生导师,研究方向为移动通信技术、无线内生安全等

    通讯作者:

    曹堃锐 krcao@nudt.edu.cn

  • 中图分类号: TN929.53

Funds: National Natural Science Foundation of China (No. 62101560), and Hubei Provincial Natural Science Foundation (No. 2025AFB943)
  • 摘要: 智能超表面通常采用有线供电方式,电源线就像一条“尾巴”,严重限制了智能超表面在室外部署的机动灵活性。本文聚焦智能超表面与射频能量采集技术结合的自供能智能超表面(Self-sustainable Intelligent Metasurface,SIM),针对SIM面临的能量与信息双重中断挑战,分别提出基于静态无线供电和基于动态无线供电的SIM通信策略,探究两种策略下非放大型SIM和放大型SIM(即U-SIM和A-SIM)的通信机理;分别从通信可靠性和安全性两个角度提出并分析所提策略下U-SIM和A-SIM的能量与信息一体化性能,即能量与信息联合中断概率、联合截获概率。结果表明,动态无线供电策略可有效缓解采集能量不足导致的SIM通信可靠性问题;A-SIM的噪声放大虽然会抑制其通信可靠性提升,但也会增强通信安全性;静态或动态同一策略下,随SIM反射单元数增多,A-SIM安全性更好,U-SIM可靠性更好。
  • 图  1  自供能智能超表面通信模型

    图  2  JOP随基站发射功率Ps的变化情况

    图  3  JIP随基站发射功率Ps的变化情况

    图  4  静态策略下JOP和JIP随SIM反射单元数N的变化情况

    图  5  动态策略下JOP和JIP随SIM反射单元数N的变化情况

    图  6  A-SIM中断概率随信号放大倍数α的变化情况

  • [1] ATAPATTU S, FAN Rongfei, DHARMAWANSA P, et al. Reconfigurable intelligent surface assisted two–way communications: Performance analysis and optimization[J]. IEEE Transactions on Communications, 2020, 68(10): 6552–6567. doi: 10.1109/TCOMM.2020.3008402.
    [2] CAO Kunrui, DING Haiyang, LI Wei, et al. On the ergodic secrecy capacity of intelligent reflecting surface aided wireless powered communication systems[J]. IEEE Wireless Communications Letters, 2022, 11(11): 2275–2279. doi: 10.1109/LWC.2022.3199593.
    [3] 杨辰泓, 桑健, 李潇, 等. RIS辅助的无线通信: 原型验证与实测进展[J]. 电信科学, 2024, 40(7): 1–12. doi: 10.11959/j.issn.1000-0801.2024189.

    YANG Chenhong, SANG Jian, LI Xiao, et al. RIS-assisted wireless communications: Prototype validation and measurement progress[J]. Telecommunications Science, 2024, 40(7): 1–12. doi: 10.11959/j.issn.1000-0801.2024189.
    [4] WANG Ji, XIAO Jian, ZOU Yixuan, et al. Wideband beamforming for RIS assisted near-field communications[J]. IEEE Transactions on Wireless Communications, 2024, 23(11): 16836–16851. doi: 10.1109/TWC.2024.3447570.
    [5] CAO Kunrui, WANG Buhong, DING Haiyang, et al. Improving physical layer security of uplink NOMA via energy harvesting jammers[J]. IEEE Transactions on Information Forensics and Security, 2021, 16: 786–799. doi: 10.1109/TIFS.2020.3023277.
    [6] ZHI Kangda, PAN Cunhua, REN Hong, et al. Active RIS versus passive RIS: Which is superior with the same power budget?[J]. IEEE Communications Letters, 2022, 26(5): 1150–1154. doi: 10.1109/LCOMM.2022.3159525.
    [7] ZHANG Zijian, DAI Linglong, CHEN Xibi, et al. Active RIS vs. Passive RIS: Which will prevail in 6G?[J]. IEEE Transactions on Communications, 2023, 71(3): 1707–1725. doi: 10.1109/TCOMM.2022.3231893.
    [8] CHEN Jingyu, CAO Kunrui, LV Lu, et al. Ergodic secrecy capacity analysis for RIS-aided wireless powered communication system under different phase shifting[J]. IEEE Transactions on Vehicular Technology, 2024, 73(11): 17276–17289. doi: 10.1109/TVT.2024.3429512.
    [9] 费丹, 陈晨, 郑鹏, 等. 基于智能超表面的室内覆盖增强技术研究与实验验证[J]. 电子与信息学报, 2022, 44(7): 2374–2381. doi: 10.11999/JEIT220068.

    FEI Dan, CHEN Chen, ZHENG Peng, et al. Research and experimental verification of reconfigurable intelligent surface in indoor coverage enhancement[J]. Journal of Electronics & Information Technology, 2022, 44(7): 2374–2381. doi: 10.11999/JEIT220068.
    [10] CAO Kunrui, DING Haiyang, LV Lu, et al. Physical-layer security for intelligent-reflecting-surface-aided wireless-powered communication systems[J]. IEEE Internet of Things Journal, 2023, 10(20): 18097–18110. doi: 10.1109/JIOT.2023.3278238.
    [11] LONG Ruizhe, LIANG Yingchang, PEI Yiyang, et al. Active reconfigurable intelligent surface-aided wireless communications[J]. IEEE Transactions on Wireless Communications, 2021, 20(8): 4962–4975. doi: 10.1109/TWC.2021.3064024.
    [12] WANG Jinghe, TANG Wankai, LIANG Jingcheng, et al. Reconfigurable intelligent surface: Power consumption modeling and practical measurement validation[J]. IEEE Transactions on Communications, 2024, 72(9): 5720–5734. doi: 10.1109/TCOMM.2024.3382332.
    [13] TYROVOLAS D, PAPANIKOLAOU V K, TEGOS S A, et al. Comparing SWIPT techniques for zero-energy RIS[C]. Proceedings of 2023 IEEE International Conference on Communications Workshops (ICC Workshops), Rome, Italy, 2023: 1848–1853. doi: 10.1109/ICCWorkshops57953.2023.10283652.
    [14] MA Yanan, LI Ming, LIU Yang, et al. Optimization for reflection and transmission dual-functional active RIS-assisted systems[J]. IEEE Transactions on Communications, 2023, 71(9): 5534–5548. doi: 10.1109/TCOMM.2023.3286453. (查阅网上资料,不确定本条文献标绿作者信息,请确认).
    [15] CHENG Yajun, PENG Wei, JIANG Tao, et al. Self-sustainable RIS aided wireless power transfer scheme[J]. IEEE Transactions on Vehicular Technology, 2023, 72(1): 881–892. doi: 10.1109/TVT.2022.3206086.
    [16] CHANG Mingyang, MU Yajie, HAN Jiaqi, et al. Tailless information-energy metasurface[J]. Advanced Materials, 2024, 36(21): 2313697. doi: 10.1002/adma.202313697.
    [17] GRADSHTEYN I S and RYZHIK I M. Table of Integrals, Series, and Products[M]. 7th ed. Burlington: Academic Press, 2007. .
  • 加载中
图(6)
计量
  • 文章访问数:  22
  • HTML全文浏览量:  20
  • PDF下载量:  0
  • 被引次数: 0
出版历程
  • 收稿日期:  2025-07-07
  • 修回日期:  2025-11-03
  • 录用日期:  2025-11-03
  • 网络出版日期:  2025-11-12

目录

    /

    返回文章
    返回