高级搜索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

面向车载元宇宙智能孪生体全局迁移的可靠服务链选择方案

邱显宜 文锦柏 康嘉文 张焘 蔡承均 刘吉强 肖明

邱显宜, 文锦柏, 康嘉文, 张焘, 蔡承均, 刘吉强, 肖明. 面向车载元宇宙智能孪生体全局迁移的可靠服务链选择方案[J]. 电子与信息学报. doi: 10.11999/JEIT250612
引用本文: 邱显宜, 文锦柏, 康嘉文, 张焘, 蔡承均, 刘吉强, 肖明. 面向车载元宇宙智能孪生体全局迁移的可靠服务链选择方案[J]. 电子与信息学报. doi: 10.11999/JEIT250612
QIU Xianyi, WEN Jinbo, KANG Jiawen, ZHANG Tao, CAI Chengjun, LIU Jiqiang, XIAO Ming. A Reliable Service Chain Option for Global Migration of Intelligent Twins in Vehicular Metaverses[J]. Journal of Electronics & Information Technology. doi: 10.11999/JEIT250612
Citation: QIU Xianyi, WEN Jinbo, KANG Jiawen, ZHANG Tao, CAI Chengjun, LIU Jiqiang, XIAO Ming. A Reliable Service Chain Option for Global Migration of Intelligent Twins in Vehicular Metaverses[J]. Journal of Electronics & Information Technology. doi: 10.11999/JEIT250612

面向车载元宇宙智能孪生体全局迁移的可靠服务链选择方案

doi: 10.11999/JEIT250612 cstr: 32379.14.JEIT250612
基金项目: 国家自然科学基金(62572132, U22A2054),广东省自然科学基金面上项目(2025A1515010137),广东省基础与应用基础研究基金项目(2023A151514 0137)
详细信息
    作者简介:

    邱显宜:女,硕士生,研究方向为智能数字孪生安全迁移

    文锦柏:男,硕士生,研究方向为智能交通,无线通信网络

    康嘉文:男,教授,研究方向为智能交通,无线通信网络

    张焘:男,副教授,研究方向为物联网安全、移动目标防御

    蔡承均:男,副教授,研究方向为网络空间安全、人工智能安全

    刘吉强:男,教授,研究方向为可信计算、隐私保护、云计算

    肖明:男,教授,研究方向为人工智能、物联网、大数据

    通讯作者:

    康嘉文 kavinkang@gdut.edu.cn

A Reliable Service Chain Option for Global Migration of Intelligent Twins in Vehicular Metaverses

Funds: The National Natural Science Foundation of China (62572132, U22A2054), Guangdong Provincial Natural Science Foundation General Program(2025A1515010137), Guangdong Basic and Applied Basic Research Foundation under Grant (2023A151514 0137)
  • 摘要: 车载元宇宙作为元宇宙与智能交通系统融合演进的新兴范式,正逐步成为汽车产业变革的重要推力。在这一背景下,智能孪生体作为覆盖车辆全生命周期并管理车载应用的数字化副本,为用户提供沉浸式车载元宇宙服务。针对车载元宇宙中孪生体迁移的服务连续性与网络安全性问题,该文提出了一种基于路侧单元(RSU)链构建的孪生体全局安全动态迁移方案,以确保在面临多种类型分布式拒绝服务(DDoS)攻击时,孪生体能够高效安全迁移。具体而言,该方案通过通信不中断机制构建可靠RSU链集合,实现孪生体在不同RSU间的无缝迁移。然后,将全局迁移过程建模为部分可观测马尔可夫决策过程,综合考虑RSU负载、计算能力及攻击类型等动态环境因素。最后,利用多智能体深度Q网络算法对安全迁移优化问题进行求解。实验结果表明,在多种DDoS攻击场景下所提方案显著提升了迁移过程的效率与安全性,使孪生体有效避免与受攻击的RSU连接,从而保障全局迁移的高效可靠性。
  • 图  1  车载元宇宙中基于RSU链的智能孪生体安全全局迁移框架

    图  2  不同RSU链长的迁移时延

    图  3  不同RSU链长的总收益

    图  4  在不同DDoS攻击下不同方案的总收益

    图  5  直接DDoS攻击下的总收益

    图  6  间接DDoS攻击下的总收益

    图  7  混合攻击下的总收益

    1  智能孪生体迁移RSU链的形成

     输入:初始化 RSU集合$ \mathcal{E} $,时间步集合$ \mathcal{T} $,RSU个数N,车辆与RSU的通信状态L,在同一时刻可以连接到的RSU集合$ \mathcal{A} $,枚举$ \mathcal{A} $[t]各时
     间点的所有部署节点的集合$ \mathcal{B} $,可行RSU链集合$ \mathcal{C} $
     (1) for t = 0 to T do
     (2)  for n = 0 to N do
     (3)  如果车辆与RSU的连接状态显示可用,即$ {\mathrm{L}}_{\mathrm{n}}\left(\mathrm{t}\right)=1 $
     (4)  将对应的RSU $ {\mathcal{E}}_{\mathrm{n}} $添加到集合$ \mathcal{A} $[t]
     (5)  end for
     (6) end for
     (7) for t = 0 to T do
     (8)  在每个时间点上,从$ \mathcal{A} $[t]中枚举所有可能部署节点,并保存于$ \mathcal{B} $
     (9) end for
     (10) 利用笛卡尔积将 $ \mathcal{B} $中不同时间点组合,生成完整的 RSU 部署链集合$ \mathcal{C} $
    下载: 导出CSV

    表  1  基本设施参数

    参数(单位)值或者范围
    车辆$ \mathcal{U} $个数10
    RSU $ \mathcal{E} $个数8
    车辆速度$ \mathrm{\nu } $(km/h)72
    任务大小D(MB)[50,200][14]
    带宽B(MHz)128
    用户天线发射功率P(W)0.25
    载波频率f(Hz)1.0015×1010[14]
    下载: 导出CSV

    表  2  DRL算法参数

    参数值或者范围
    学习率10–3
    训练轮数500
    训练个数8
    测试个数2
    种子64
    DQN-n_step3
    PPO-clip10–2
    A2C-il_lr10–3
    下载: 导出CSV
  • [1] XU Minrui, NIYATO D, ZHANG Hongliang, et al. Generative AI-empowered effective physical-virtual synchronization in the vehicular metaverse[C]. 2023 IEEE International Conference on Metaverse Computing, Networking and Applications (MetaCom), Kyoto, Japan, 2023: 607–611. doi: 10.1109/MetaCom57706.2023.00106.
    [2] ZHANG Hui, LUO Guiyang, LI Yidong, et al. Parallel vision for intelligent transportation systems in metaverse: Challenges, solutions, and potential applications[J]. IEEE Transactions on Systems, Man, and Cybernetics: Systems, 2023, 53(6): 3400–3413. doi: 10.1109/TSMC.2022.3228314.
    [3] JI Baofeng, ZHANG Xueru, MUMTAZ S, et al. Survey on the internet of vehicles: Network architectures and applications[J]. IEEE Communications Standards Magazine, 2020, 4(1): 34–41. doi: 10.1109/MCOMSTD.001.1900053.
    [4] ZHOU Pengyuan, ZHU Jinjing, WANG Yiting, et al. Vetaverse: A survey on the intersection of Metaverse, vehicles, and transportation systems[EB/OL]. https://doi.org/10.48550/arXiv.2210.15109, 2022.
    [5] WEN Jinbo, KANG Jiawen, XIONG Zehui, et al. Task freshness-aware incentive mechanism for vehicle twin migration in vehicular metaverses[C]. 2023 IEEE International Conference on Metaverse Computing, Networking and Applications (MetaCom), Kyoto, Japan, 2023: 481–487. doi: 10.1109/MetaCom57706.2023.00089.
    [6] ZHONG Yue, WEN Jinbo, ZHANG Junhong, et al. Blockchain-assisted twin migration for vehicular metaverses: A game theory approach[J]. Transactions on Emerging Telecommunications Technologies, 2023, 34(12): e4856. doi: 10.1002/ett.4856.
    [7] KUMARI P and JAIN A K. A comprehensive study of DDoS attacks over IoT network and their countermeasures[J]. Computers & Security, 2023, 127: 103096. doi: 10.1016/j.cose.2023.103096.
    [8] ZHANG Tao, XU Changqiao, ZOU Ping, et al. How to mitigate DDoS intelligently in SD-IoV: A moving target defense approach[J]. IEEE Transactions on Industrial Informatics, 2023, 19(1): 1097–1106. doi: 10.1109/TII.2022.3190556.
    [9] KANG Jiawen, CHEN Junlong, XU Minrui, et al. UAV-assisted dynamic avatar task migration for vehicular metaverse services: A multi-agent deep reinforcement learning approach[J]. IEEE/CAA Journal of Automatica Sinica, 2024, 11(2): 430–445. doi: 10.1109/JAS.2023.123993.
    [10] TONG Yongju, KANG Jiawen, CHEN Junlong, et al. Diffusion-based reinforcement learning for dynamic UAV-assisted vehicle twins migration in vehicular metaverses[C]. 2024 IEEE Global Communications Conference, Cape Town, South Africa, 2024: 5156–5161. doi: 10.1109/GLOBECOM52923.2024.10901050.
    [11] AlKHOORI F A, KHAN L U, GUIZANI M, et al. Latency-aware placement of vehicular metaverses using virtual network functions[J]. Simulation Modelling Practice and Theory, 2024, 133: 102899. doi: 10.1016/j.simpat.2024.102899.
    [12] AHILAL A, BRAUD T, LEE L H, et al. Toward a traffic metaverse with shared vehicle perception[J]. IEEE Communications Standards Magazine, 2023, 7(3): 40–47. doi: 10.1109/MCOMSTD.0008.2200067.
    [13] QIU Yu, CHEN Min, HUANG Hebin, et al. Spotlighter: Backup age-guaranteed immersive virtual vehicle service provisioning in edge-enabled vehicular metaverse[J]. IEEE Transactions on Mobile Computing, 2024, 23(12): 13375–13391. doi: 10.1109/TMC.2024.3425896.
    [14] JEREMIAH S R, YANG L T, and PARK J H. Digital twin-assisted resource allocation framework based on edge collaboration for vehicular edge computing[J]. Future Generation Computer Systems, 2024, 150: 243–254. doi: 10.1016/j.future.2023.09.001.
    [15] KHAN L U, GUIZANI M, NIYATO D, et al. Metaverse for wireless systems: Architecture, advances, standardization, and open challenges[J]. Internet of Things, 2024, 25: 101121. doi: 10.1016/j.iot.2024.101121.
    [16] CHEN Junlong, KANG Jiawen, XU Minrui, et al. Multiagent deep reinforcement learning for dynamic avatar migration in AIoT-enabled vehicular metaverses with trajectory prediction[J]. IEEE Internet of Things Journal, 2024, 11(1): 70–83. doi: 10.1109/JIOT.2023.3296075.
    [17] KANG Yingkai, WEN Jinbo, KANG Jiawen, et al. Hybrid-generative diffusion models for attack-oriented twin migration in vehicular metaverses[J]. IEEE Transactions on Vehicular Technology, 2025, 74(9): 14720–14734. doi: 10.1109/TVT.2025.3566034.
    [18] NIU Xin and LU Jiazhang. Moving target defense controller of mobile system based on Openflow sensor security scheme[J]. Computer Communications, 2020, 161: 142–149. doi: 10.1016/j.comcom.2020.05.004.
    [19] GAO Chungang and WANG Yongjie. Reinforcement learning based self-adaptive moving target defense against DDoS attacks[J]. Journal of Physics: Conference Series, 2021, 1812: 012039. doi: 10.1088/1742-6596/1812/1/012039.
    [20] ZHANG Tao, XU Changqiao, ZOU Ping, et al. How to mitigate DDoS intelligently in SD-IoV: A moving target defense approach[J]. IEEE Transactions on Industrial Informatics, 2023, 19(1): 1097–1106. doi: 10.1109/TII.2022.3190556. (查阅网上资料,本条文献与第8条文献重复,请确认).
    [21] HYDER M F and FATIMA T. Towards crossfire distributed denial of service attack protection using intent-based moving target defense over software-defined networking[J]. IEEE Access, 2021, 9: 112792–112804. doi: 10.1109/ACCESS.2021.3103845.
    [22] SHAAR F and EFE A. DDoS attacks and impacts on various cloud computing components[J]. International Journal of Information Security Science, 2018, 7(1): 26–48.
    [23] SHANNON C E. A mathematical theory of communication[J]. The Bell System Technical Journal, 1948, 27(3): 379–423. doi: 10.1002/j.1538-7305.1948.tb01338.x.
    [24] REN Pei, QIAO Xiuquan, HUANG Yakun, et al. Edge AR X5: An edge-assisted multi-user collaborative framework for mobile web augmented reality in 5G and beyond[J]. IEEE Transactions on Cloud Computing, 2022, 10(4): 2521–2537. doi: 10.1109/TCC.2020.3046128.
    [25] SKLAR B. Rayleigh fading channels in mobile digital communication systems. I. Characterization[J]. IEEE Communications Magazine, 1997, 35(9): 136–146. doi: 10.1109/35.620535.
    [26] WANG Xu, WANG Sen, LIANG Xingxing, et al. Deep reinforcement learning: A survey[J]. IEEE Transactions on Neural Networks and Learning Systems, 2024, 35(4): 5064–5078. doi: 10.1109/TNNLS.2022.3207346.
    [27] ZAKHARENKOV A and MAKAROV I. Deep reinforcement learning with DQN vs. PPO in VizDoom[C]. 2021 IEEE 21st International Symposium on Computational Intelligence and Informatics, Budapest, Hungary, 2021: 131–136. doi: 10.1109/CINTI53070.2021.9668479.
    [28] DE LA FUENTE N and GUERRA D A V. A comparative study of deep reinforcement learning models: DQN vs PPO vs A2C[EB/OL]. https://doi.org/10.48550/arXiv.2407.14151, 2024.
    [29] LADOSZ P, WENG Lilian, KIM M, et al. Exploration in deep reinforcement learning: A survey[J]. Information Fusion, 2022, 85: 1–22. doi: 10.1016/j.inffus.2022.03.003.
    [30] FAN Jianqing, WANG Zhaoran, XIE Yuchen, et al. A theoretical analysis of deep Q-learning[C]. Proceedings of the 2nd Annual Conference on Learning for Dynamics and Control, Berkeley, USA, 2020: 486–489.
  • 加载中
图(7) / 表(3)
计量
  • 文章访问数:  37
  • HTML全文浏览量:  19
  • PDF下载量:  2
  • 被引次数: 0
出版历程
  • 收稿日期:  2025-07-01
  • 修回日期:  2025-11-03
  • 录用日期:  2025-11-03
  • 网络出版日期:  2025-11-13

目录

    /

    返回文章
    返回