高级搜索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

面向移动边缘计算的协作NOMA安全卸载能耗优化

陈健 马天瑞 杨龙 吕璐 徐勇军

陈健, 马天瑞, 杨龙, 吕璐, 徐勇军. 面向移动边缘计算的协作NOMA安全卸载能耗优化[J]. 电子与信息学报. doi: 10.11999/JEIT250606
引用本文: 陈健, 马天瑞, 杨龙, 吕璐, 徐勇军. 面向移动边缘计算的协作NOMA安全卸载能耗优化[J]. 电子与信息学报. doi: 10.11999/JEIT250606
CHEN Jian, MA Tianrui, YANG Long, LV Lu, XU Yongjun. Energy Consumption Optimization of Cooperative NOMA Secure Offload for Mobile Edge Computing[J]. Journal of Electronics & Information Technology. doi: 10.11999/JEIT250606
Citation: CHEN Jian, MA Tianrui, YANG Long, LV Lu, XU Yongjun. Energy Consumption Optimization of Cooperative NOMA Secure Offload for Mobile Edge Computing[J]. Journal of Electronics & Information Technology. doi: 10.11999/JEIT250606

面向移动边缘计算的协作NOMA安全卸载能耗优化

doi: 10.11999/JEIT250606 cstr: 32379.14.JEIT250606
基金项目: 国家自然科学基金资助项目(No.62271368),陕西省重点产业创新链(群)资助项目(No.2023-ZDLGY-50),陕西省青年科技新星人才资助项目(No.2024ZC-KJXX-080)
详细信息
    作者简介:

    陈健:男,教授,研究方向为协作通信、无线资源管理等

    马天瑞:男,硕士生,研究方向为协作边缘计算及物理层安全

    杨龙:男,教授,研究方向为安全通信、边缘计算、通信对抗等

    吕璐:男,副教授,研究方向为非正交多址接入、物理层安全等

    徐勇军:男,教授,研究方向为移动边缘计算、非正交多址接入等

    通讯作者:

    杨龙 lyang@xidian.edu.cn

  • 中图分类号: TN929.5; TN915.08

Energy Consumption Optimization of Cooperative NOMA Secure Offload for Mobile Edge Computing

Funds: The National Natural Science Foundation of China (No.62271368), The Key Research and Development Program of Shaanxi (No.2023-ZDLGY-50), The Innovation Capability Support Program of Shaanxi(No. 2024ZC-KJXX-080)
  • 摘要: 为降低移动边缘计算(MEC)网络安全卸载过程的能耗,该文设计了一种基于协作非正交多址(NOMA)的安全卸载模式,利用协作节点的通信和计算能力置换系统的安全性能。考虑设备计算和通信等资源分配的联合设计,提出了保密中断概率(SOP)约束下的系统加权总能耗最小化问题。针对该非凸优化问题,将其分解为时隙与任务分配和功率分配两个子问题,并提出了一种基于交替和逐次凸逼近(SCA)的迭代算法求解,依据信道状态和计算资源调整用户节点与协作节点之间的负载、功率和时隙分配。理论分析与仿真结果表明,该文提出的算法收敛且具有低复杂度,相比于现有的NOMA转发卸载方案、友好干扰方案和NOMA迁移计算方案,可显著降低系统能耗,同时具备更高负载能力和更强的抗窃听能力,实现了节点在通信、计算和安全之间的权衡折衷。
  • 图  1  协作NOMA-MEC安全卸载系统模型

    图  2  多节点协作NOMA-MEC安全卸载系统模型

    图  3  总能耗随迭代次数的变化关系

    图  4  总能耗随节点到基站距离的变化关系

    图  5  总能耗随时间约束的变化关系

    图  6  总能耗随总任务量的变化关系

    图  7  总能耗随保密中断概率的变化关系

    图  8  协作节点耗能比例随用户节点到基站距离的变化关系

    1  基于交替迭代的通算资源分配算法

     1. 选取初始向量$ {{\boldsymbol{t}}_0} $、$ {{\boldsymbol{l}}_0} $,设置交替优化的迭代次数$ i = 0 $,最大
     迭代次数$ {D_0} \gt 0 $和精度$ \delta _0^{{\text{tar}}} \gt 0 $, $ \delta _0^{{var} } \gt 0 $;
     2. FOR $ i = 0:{D_0} $
     3.  内点法求解问题$ {\text{P1 - 1}} $,得到解$ {{\boldsymbol{t}}_{i + 1}} $和$ {{\boldsymbol{l}}_{i + 1}} $;
     4.  选取初始向量$ {{\boldsymbol{p}}_0} $,设置SCA的迭代次数$ j = 0 $,最大迭代次
     数$ {D_1} \gt 0 $和精度$ \delta _1^{{\text{tar}}} \gt 0 $, $ \delta _1^{{var} } \gt 0 $;
     5.  FOR $ j = 0:{D_1} $
     6.   内点法求解问题$ {\text{P1 - }}{{\text{2}}^{\boldsymbol{'}}} $,得到解$ {{\boldsymbol{p}}_{j + 1}} $,并更新
        $ {{\boldsymbol{p}}_{i + 1}} = {{\boldsymbol{p}}_{j + 1}} $;
     7.   IF $ \left| {{E_{{\text{total}}}}({{\boldsymbol{p}}_j}) - {E_{{\text{total}}}}({{\boldsymbol{p}}_{j + 1}})} \right| \le \delta _1^{{\text{tar}}} $或
        $ \left\| {{{\boldsymbol{p}}_j} - {{\boldsymbol{p}}_{j + 1}}} \right\| \le \delta _1^{{var} } $
     8.    获得问题$ {\text{P1 - 2}} $的解$ {{\boldsymbol{p}}_{i + 1}} $,BREAK;
     9.   ELSE $ j = j + 1 $;
     10.   END IF
     11. END FOR
     12. IF $ \left| {{E_{{\text{total}}}}({{\boldsymbol{t}}_i},{{\boldsymbol{l}}_i}) - {E_{{\text{total}}}}({{\boldsymbol{t}}_{i + 1}},{{\boldsymbol{l}}_{i + 1}})} \right| \le \delta _0^{{\text{tar}}} $或
        $ \left\| {[{{\boldsymbol{t}}_i},{{\boldsymbol{l}}_i}] - [{{\boldsymbol{t}}_{i + 1}},{{\boldsymbol{l}}_{i + 1}}]} \right\| \le \delta _0^{{var} } $
     13.  获得问题$ {\text{P1}} $的解$ {{\boldsymbol{t}}_{i + 1}} $,$ {{\boldsymbol{p}}_{i + 1}} $,$ {{\boldsymbol{l}}_{i + 1}} $,BREAK;
     14. ELSE $ i = i + 1 $;
     15. END IF
     16. END FOR
    下载: 导出CSV

    2  基于VIKOR的协作节点调度算法

     1. 依据节点数目$ M $和属性维度$ N $构建VIKOR决策矩阵
     $ {{\boldsymbol{W}}_{M \times N}} $;
     2. 归一化属性评估值$ {\sigma _{ij}} $;
     3. FOR $ j = 0:N $
     4.  FOR $ i = 0:M $
     5.  得到正理想解$ \sigma _j^ + = \{ {\max _i}{\sigma _{ij}}\} $和负理想解$ \sigma _j^ - = \{ {\min _i}{\sigma _{ij}}\} $;
     6.  END FOR
     7. END FOR
     8. FOR $ i = 0:M $
     9.  计算的群体效用值$ {S_i} $和个体遗憾值$ {{\text{R}}_i} $以及HEi的权重值$ {{\text{Q}}_i} $;
     10. END FOR
     11. 选取最优的协作节点$ {\text{argmin}}{{\text{Q}}_i},i \in M $;
    下载: 导出CSV
  • [1] CHEN Jingxuan, CAO Xianbin, YANG Peng, et al. Deep reinforcement learning based resource allocation in multi-UAV-aided MEC networks[J]. IEEE Transactions on Communications, 2023, 71(1): 296–309. doi: 10.1109/TCOMM.2022.3226193.
    [2] DJIGAL H, XU Jia, LIU Linfeng, et al. Machine and deep learning for resource allocation in multi-access edge computing: A survey[J]. IEEE Communications Surveys & Tutorials, 2022, 24(4): 2449–2494. doi: 10.1109/COMST.2022.3199544.
    [3] 周天清, 胡海琴, 曾新亮. NOMA-MEC系统中基于改进遗传算法的协作式计算卸载与资源管理[J]. 电子与信息学报, 2022, 44(9): 3014–3023. doi: 10.11999/JEIT220306.

    ZHOU Tianqing, HU Haiqin, and ZENG Xinliang. Cooperative computation offloading and resource management based on improved genetic algorithm in NOMA-MEC systems[J]. Journal of Electronics & Information Technology, 2022, 44(9): 3014–3023. doi: 10.11999/JEIT220306.
    [4] JIANG Hongbo, DAI Xingxia, XIAO Zhu, et al. Joint task offloading and resource allocation for energy-constrained mobile edge computing[J]. IEEE Transactions on Mobile Computing, 2023, 22(7): 4000–4015. doi: 10.1109/TMC.2022.3150432.
    [5] TAN Lin, KUANG Zhufang, ZHAO Lian, et al. Energy-efficient joint task offloading and resource allocation in OFDMA-based collaborative edge computing[J]. IEEE Transactions on Wireless Communications, 2022, 21(3): 1960–1972. doi: 10.1109/TWC.2021.3108641.
    [6] HAN Xiyu, LIAO Zhuofan, and TANG Xiaoyong. Pricing-based task offloading considering user energy consumption in MEC system[C]. 2024 IEEE International Symposium on Parallel and Distributed Processing with Applications, Kaifeng, China, 2024: 1911–1916. doi: 10.1109/ISPA63168.2024.00260.
    [7] 胡晗, 鲍楠, 凌章, 等. 基于NOMA的移动边缘计算系统公平能效调度算法[J]. 电子与信息学报, 2021, 43(12): 3563–3570. doi: 10.11999/JEIT200898.

    HU Han, BAO Nan, LING Zhang, et al. Fair energy efficiency scheduling in NOMA-based mobile edge computing[J]. Journal of Electronics & Information Technology, 2021, 43(12): 3563–3570. doi: 10.11999/JEIT200898.
    [8] DING Zhiguo, FAN Pingzhi, and POOR H V. Impact of non-orthogonal multiple access on the offloading of mobile edge computing[J]. IEEE Transactions on Communications, 2019, 67(1): 375–390. doi: 10.1109/TCOMM.2018.2870894.
    [9] WANG Lei, LIU Xin, JIANG Xue, et al. Effective computational efficiency maximization in cooperative NOMA based MEC system[C]. 2022 14th International Conference on Wireless Communications and Signal Processing, Nanjing, China, 2022: 788–793. doi: 10.1109/WCSP55476.2022.10039385.
    [10] ZENG Sheng, HUANG Xiaohong, and LI Dandan. Joint communication and computation cooperation in wireless-powered mobile-edge computing networks with NOMA[J]. IEEE Internet of Things Journal, 2023, 10(11): 9849–9862. doi: 10.1109/JIOT.2023.3236089.
    [11] RANAWEERA P, JURCUT A D, and LIYANAGE M. Survey on multi-access edge computing security and privacy[J]. IEEE Communications Surveys & Tutorials, 2021, 23(2): 1078–1124. doi: 10.1109/COMST.2021.3062546.
    [12] CHEN Yichao, ZHAO Kai, ZHANG Heng, et al. A comprehensive physical layer security mechanism for mobile edge computing[J]. IEEE Internet of Things Journal, 2023, 10(19): 16816–16829. doi: 10.1109/JIOT.2023.3272113.
    [13] WANG Qun, HU Han, SUN Haijian, et al. Secure and energy-efficient offloading and resource allocation in a NOMA-based MEC network[C]. 2020 IEEE/ACM Symposium on Edge Computing, San Jose, USA, 2020: 420–424. doi: 10.1109/SEC50012.2020.00063.
    [14] ZHENG Tongxing, CHEN Xin, WEN Yating, et al. Secure offloading in NOMA-enabled multi-access edge computing networks[J]. IEEE Transactions on Communications, 2024, 72(4): 2152–2165. doi: 10.1109/TCOMM.2023.3342242.
    [15] FU Xincheng, YU Xueyong, and WANG Shuyang. Optimization of energy consumption with hybrid cooperative NOMA for secure MEC[C]. 2022 4th International Academic Exchange Conference on Science and Technology Innovation, Guangzhou, China, 2022: 1279–1285. doi: 10.1109/IAECST57965.2022.10062073.
    [16] QIAN Liping, WU Weicong, LU Weidang, et al. Secrecy-based energy-efficient mobile edge computing via cooperative non-orthogonal multiple access transmission[J]. IEEE Transactions on Communications, 2021, 69(7): 4659–4677. doi: 10.1109/TCOMM.2021.3070620.
    [17] FANG Tao, YUAN Feng, AO Liang, et al. Joint task offloading, D2D pairing, and resource allocation in device-enhanced MEC: A potential game approach[J]. IEEE Internet of Things Journal, 2022, 9(5): 3226–3237. doi: 10.1109/JIOT.2021.3097754.
    [18] LONG Hao, XU Chen, ZHENG Guangyuan, et al. Socially-aware energy-efficient task partial offloading in MEC networks with D2D collaboration[J]. IEEE Transactions on Green Communications and Networking, 2022, 6(3): 1889–1902. doi: 10.1109/TGCN.2022.3153956.
    [19] YANG Long, CHEN Jian, JIANG Hai, et al. Optimal relay selection for secure cooperative communications with an adaptive eavesdropper[J]. IEEE Transactions on Wireless Communications, 2017, 16(1): 26–42. doi: 10.1109/TWC.2016.2617328.
    [20] WU Mengru, SONG Qingyang, GUO Lei, et al. Energy-efficient secure computation offloading in wireless powered mobile edge computing systems[J]. IEEE Transactions on Vehicular Technology, 2023, 72(5): 6907–6912. doi: 10.1109/TVT.2023.3236327.
    [21] MEHBODNIYA A, KALEEM F, YEN K K, et al. A fuzzy extension of VIKOR for target network selection in heterogeneous wireless environments[J]. Physical Communication, 2013, 7: 145–155. doi: 10.1016/j.phycom.2013.02.002.
    [22] BADEEL R, SUBRAMANIAM S K, MUHAMMED A, et al. A multicriteria decision-making framework for access point selection in hybrid LiFi/WiFi networks using integrated AHP–VIKOR technique[J]. Sensors, 2023, 23(3): 1312. doi: 10.3390/s23031312.
    [23] ZHANG Luyao and HAO Li. Delay minimization in NOMA-based cooperative mobile edge computing(MEC) offloading[C]. 2024 IEEE International Workshop on Radio Frequency and Antenna Technologies, Shenzhen, China, 2024: 271–275. doi: 10.1109/iWRFAT61200.2024.10594572.
    [24] JAIN P and KAR P. Non-convex optimization for machine learning[J]. Foundations and Trends® in Machine Learning, 2017, 10(3/4): 142–363. doi: 10.1561/2200000058.
  • 加载中
图(8) / 表(2)
计量
  • 文章访问数:  39
  • HTML全文浏览量:  11
  • PDF下载量:  5
  • 被引次数: 0
出版历程
  • 修回日期:  2025-11-17
  • 录用日期:  2025-11-17
  • 网络出版日期:  2025-11-22

目录

    /

    返回文章
    返回