高级搜索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

采用回波相位加权的准涡旋电磁波雷达前视成像

舒高峰 魏奕鑫 李宁

舒高峰, 魏奕鑫, 李宁. 采用回波相位加权的准涡旋电磁波雷达前视成像[J]. 电子与信息学报. doi: 10.11999/JEIT250542
引用本文: 舒高峰, 魏奕鑫, 李宁. 采用回波相位加权的准涡旋电磁波雷达前视成像[J]. 电子与信息学报. doi: 10.11999/JEIT250542
SHU Gaofeng, WEI Yixin, LI Ning. Quasi-Vortex Electromagnetic Wave Radar Forward Looking based on Echo Phase Weighting[J]. Journal of Electronics & Information Technology. doi: 10.11999/JEIT250542
Citation: SHU Gaofeng, WEI Yixin, LI Ning. Quasi-Vortex Electromagnetic Wave Radar Forward Looking based on Echo Phase Weighting[J]. Journal of Electronics & Information Technology. doi: 10.11999/JEIT250542

采用回波相位加权的准涡旋电磁波雷达前视成像

doi: 10.11999/JEIT250542 cstr: 32379.14.JEIT250542
基金项目: 河南省自然科学基金 (242300421170)
详细信息
    作者简介:

    舒高峰:男,副教授,研究方向为SAR信号处理

    魏奕鑫:男,硕士生,研究方向为涡旋电磁波雷达前视成像

    李宁:男,教授,研究方向为合成孔径雷达成像与对抗

    通讯作者:

    舒高峰 gaofeng.shu@henu.edu.cn

Quasi-Vortex Electromagnetic Wave Radar Forward Looking based on Echo Phase Weighting

Funds: The Natural Science Foundation of Henan (242300421170)
  • 摘要: 携带轨道角动量(Orbital Angular Momentum, OAM)的涡旋电磁波(Vortex Electromagnetic wave, VEMW)由于不同OAM模式之间的正交性,在雷达前视成像方面表现出重要的应用潜力,引起国内外学者的广泛关注。在VEMW成像技术中,通常采用均匀圆环阵列(Uniform Circular Array, UCA)来生成和发射多模态VEMW照射成像目标,以获得回波。然而,UCA产生的VEMW主瓣发散的特点,导致在自由空间中产生的电磁波能量分布不集中,从而使得雷达回波能量相对较弱。此外,传统涡旋电磁波雷达在工作过程中需要不断切换OAM模式,这一过程增加了系统的复杂性。为了应对上述挑战,该文首先建立了准圆环阵列(Quasi-Circular Array, QCA)的电场模型,通过QCA得到了能量更加集中的准涡旋电磁波。同时,提出了一种对每个阵元的接收回波进行多OAM模式相位加权的方法,得到等效多模式接收回波。仿真结果表明,相比于基于UCA的涡旋电磁波雷达成像方法,该文所提方法方位分辨率提高了两倍以上,并且有效地提高了回波能量,在信噪比低至–15 dB的环境下,重建的目标仍然清晰可见。该文所提方法在雷达前视成像领域具有较大的实际应用潜力。
  • 图  1  QCA几何模型

    图  2  半径$ a=2 \lambda $,阵元激励$ E_{0}=1 $,阵元数$ M=13 $的QCA产生涡旋电磁波的模态谱图

    图  3  相同阵列配置下QCA与UCA产生的不同模态的天线方向图的电场幅度与相位对比

    图  4  QCA与UCA产生不同涡旋电磁波的主瓣增益

    图  5  等效单模态发射-多模态接收回波成像处理流程图

    图  6  相位调制对辐射方向图的影响

    图  7  UCA与本文所提方法得到天线方向图的主瓣能量

    图  8  主瓣相位

    图  9  本文方法与传统方法在不同模态范围下的点目标成像结果和方位向切面

    图  10  目标理想模型

    图  11  本文方法与对比方法在不同信噪比下的成像结果

    图  12  不同SNR下本文方法与对比方法重建图像的均方误差与图像熵

    表  1  本文方法主瓣相位线性度(%)

    相位调制模态($ t_{\mathrm{s}} $)主瓣相位线性度
    198.85
    298.22
    399.93
    下载: 导出CSV

    表  2  雷达系统参数

    符号
    载频$ f_{e} $9.6 GHz
    带宽$ B_{ \pm 0} $50 MHz
    阵元个数$ M $13
    电尺寸半径$ \bar{a} $2
    发射的OAM模态$ t_{r} $1
    下载: 导出CSV

    表  3  不同模态下的方位向评估指标

    方法 方位向分辨率 (°) 峰值旁瓣比 (dB)
    [–4,4] [–5,5] [–6,6] [–4,4] [–5,5] [–6,6]
    所提方法 12.4 9.3 4.8 –21 –20 –30
    基于UCA的方法 23.9 18.1 16 –15 –11 –11
    下载: 导出CSV
  • [1] DENG Yunkai, YU Weidong, WANG Pei, et al. The high-resolution synthetic aperture radar system and signal processing techniques: Current progress and future prospects [review papers][J]. IEEE Geoscience and Remote Sensing Magazine, 2024, 12(4): 169–189. doi: 10.1109/MGRS.2024.3456444.
    [2] CHEN Jianlai, XIONG Rongqi, YU Hanwen, et al. Microwave photonic synthetic aperture radar: Systems, experiments, and imaging processing [Technical Committees][J]. IEEE Geoscience and Remote Sensing Magazine, 2025, 13(2): 314–328. doi: 10.1109/MGRS.2024.3444777.
    [3] QIU Xiaolan, HU Donghui, and DING Chibiao. Some reflections on bistatic SAR of forward-looking configuration[J]. IEEE Geoscience and Remote Sensing Letters, 2008, 5(4): 735–739. doi: 10.1109/LGRS.2008.2004506.
    [4] PENG Xueming, WANG Yanping, HONG Wen, et al. Autonomous navigation airborne forward-looking SAR high precision imaging with combination of pseudo-polar formatting and overlapped sub-aperture algorithm[J]. Remote Sensing, 2013, 5(11): 6063–6078. doi: 10.3390/rs5116063.
    [5] HODGSON J A and LEE D W. Terminal guidance using a Doppler beam sharpening radar[C]. Proceedings of the AIAA Guidance, Navigation, and Control Conference and Exhibit, Austin, USA, 2003: 5796. doi: 10.2514/6.2003-5796.
    [6] CHEN Hongmeng, LI Ming, ZHANG Peng, et al. Resolution enhancement for Doppler beam sharpening imaging[J]. IET Radar, Sonar & Navigation, 2015, 9(7): 843–851. doi: 10.1049/iet-rsn.2014.0384.
    [7] ALLEN L, BEIJERSBERGEN M W, SPREEUW R J C, et al. Orbital angular momentum of light and the transformation of Laguerre-Gaussian laser modes[J]. Physical Review A, 1992, 45(11): 8185–8189. doi: 10.1103/PhysRevA.45.8185.
    [8] THIDÉ B, THEN H, SJÖHOLM J, et al. Utilization of photon orbital angular momentum in the low-frequency radio domain[J]. Physical Review Letters, 2007, 99(8): 087701. doi: 10.1103/PhysRevLett.99.087701.
    [9] 赵林军, 张海林, 刘乃安. 涡旋电磁波无线通信技术的研究进展[J]. 电子与信息学报, 2021, 43(11): 3075–3085. doi: 10.11999/JEIT200899.

    ZHAO Linjun, ZHANG Hailin, and LIU Naian. Research status of vortex electromagnetic wave wireless communication technologies[J]. Journal of Electronics & Information Technology, 2021, 43(11): 3075–3085. doi: 10.11999/JEIT200899.
    [10] LEE D, SASAKI H, YAGI Y, et al. Orbital angular momentum multiplexing using radio wave and its extension to multishape radio[J]. Journal of Lightwave Technology, 2023, 41(7): 1985–1996. doi: 10.1109/JLT.2022.3223366.
    [11] BABIKER M, ANDREWS D L, and LEMBESSIS V E. Atoms in complex twisted light[J]. Journal of Optics, 2019, 21(1): 013001. doi: 10.1088/2040-8986/aaed14.
    [12] WANG Jianqiu, LIU Kang, WANG Yu, et al. A novel forward-looking target reconstruction method with electromagnetic vortex interferometry[J]. IEEE Transactions on Microwave Theory and Techniques, 2023, 71(12): 5428–5444. doi: 10.1109/TMTT.2023.3278947.
    [13] LIU Kang, LIU Hongyan, WANG Hongqiang, et al. Vortex electromagnetic wave imaging with orbital angular momentum and waveform degrees of freedom[J]. Optics Express, 2024, 32(8): 13574–13582. doi: 10.1364/OE.521640.
    [14] LIU Kang, CHENG Yongqiang, LI Xiang, et al. Microwave-sensing technology using orbital angular momentum: Overview of its advantages[J]. IEEE Vehicular Technology Magazine, 2019, 14(2): 112–118. doi: 10.1109/MVT.2018.2890673.
    [15] TAN Zhengkuan, LIU Kang, LIU Hongyan, et al. Monopulse electromagnetic vortex imaging method by multiplexing OAM modes based on frequency diversity[J]. IEEE Sensors Journal, 2024, 24(22): 37061–37071. doi: 10.1109/JSEN.2024.3473949.
    [16] ZHANG Lingling, ZHU Yongzhong, CHEN Yijun, et al. Three-dimensional micro-Doppler parameter estimation of rotor target based on VEMW radar[J]. IEEE Sensors Journal, 2025, 25(6): 10155–10162. doi: 10.1109/JSEN.2025.3533009.
    [17] 王建秋, 刘康, 王煜, 等. 涡旋电磁波雷达成像分辨力研究[J]. 雷达学报, 2021, 10(5): 680–690. doi: 10.12000/JR21054.

    WANG Jianqiu, LIU Kang, WANG Yu, et al. Resolution analysis of vortex electromagnetic radar imaging[J]. Journal of Radars, 2021, 10(5): 680–690. doi: 10.12000/JR21054.
    [18] 潘浩然, 马晖, 胡敦法, 等. 基于涡旋电磁波新体制的雷达前视三维成像[J]. 雷达学报, 2024, 13(5): 1109–1122. doi: 10.12000/JR24123.

    PAN Haoran, MA Hui, HU Dunfa, et al. Novel forward-looking three-dimensional imaging based on vortex electromagnetic wave radar[J]. Journal of Radars, 2024, 13(5): 1109–1122. doi: 10.12000/JR24123.
    [19] LIU Kang, LIU Hongyan, QIN Yuliang, et al. Generation of OAM beams using phased array in the microwave band[J]. IEEE Transactions on Antennas and Propagation, 2016, 64(9): 3850–3857. doi: 10.1109/TAP.2016.2589960.
    [20] YAO A M and PADGETT M J. Orbital angular momentum: Origins, behavior and applications[J]. Advances in Optics and Photonics, 2011, 3(2): 161–204. doi: 10.1364/AOP.3.000161.
    [21] LIU Hongyan, WANG Yu, WANG Jianqiu, et al. Electromagnetic vortex enhanced imaging using fractional OAM beams[J]. IEEE Antennas and Wireless Propagation Letters, 2021, 20(6): 948–952. doi: 10.1109/LAWP.2021.3067914.
    [22] KUANG Feng, LIU Kang, LIU Hongyan, et al. Object imaging method with electromagnetic wavefront modulation in forward-looking sight[J]. IEEE Antennas and Wireless Propagation Letters, 2024, 23(11): 3357–3361. doi: 10.1109/LAWP.2024.3456822.
    [23] MAO Rongrong, LIU Kang, LIU Hongyan, et al. Electromagnetic vortex imaging based on OAM multiplexing beam with orthogonal polyphase coding[J]. IEEE Sensors Journal, 2023, 23(24): 30786–30793. doi: 10.1109/JSEN.2023.3329359.
    [24] FOUDA R M, BAUM T C, and GHORBANI K. Quasi-orbital angular momentum (Q-OAM) generated by quasi-circular array antenna (QCA)[J]. Scientific Reports, 2018, 8(1): 8363. doi: 10.1038/s41598-018-26733-6.
    [25] VENERI A, BURGHIGNOLI P, and COMITE D. Microwave imaging with circular arrays: Comparative analysis between OAM and MIMO[J]. IEEE Transactions on Antennas and Propagation, 2025, 73(5): 3015–3025. doi: 10.1109/TAP.2024.3516358.
    [26] YUAN Tiezhu, WANG Hongqiang, QIN Yuliang, et al. Electromagnetic vortex imaging using uniform concentric circular arrays[J]. IEEE Antennas and Wireless Propagation Letters, 2016, 15: 1024–1027. doi: 10.1109/LAWP.2015.2490169.
  • 加载中
图(12) / 表(3)
计量
  • 文章访问数:  17
  • HTML全文浏览量:  12
  • PDF下载量:  2
  • 被引次数: 0
出版历程
  • 收稿日期:  2025-06-04
  • 修回日期:  2025-09-17
  • 网络出版日期:  2025-09-23

目录

    /

    返回文章
    返回