高级搜索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

大范围多径时延扩展信道实时模拟的高效存储方法

李维实 周辉 焦逊 徐强 唐友喜

李维实, 周辉, 焦逊, 徐强, 唐友喜. 大范围多径时延扩展信道实时模拟的高效存储方法[J]. 电子与信息学报. doi: 10.11999/JEIT250525
引用本文: 李维实, 周辉, 焦逊, 徐强, 唐友喜. 大范围多径时延扩展信道实时模拟的高效存储方法[J]. 电子与信息学报. doi: 10.11999/JEIT250525
LI Weishi, ZHOU Hui, JIAO Xun, XU Qiang, TANG Youxi. Efficient Storage Method for Real-Time Simulation of Wide-Range Multipath Delay Spread Channels[J]. Journal of Electronics & Information Technology. doi: 10.11999/JEIT250525
Citation: LI Weishi, ZHOU Hui, JIAO Xun, XU Qiang, TANG Youxi. Efficient Storage Method for Real-Time Simulation of Wide-Range Multipath Delay Spread Channels[J]. Journal of Electronics & Information Technology. doi: 10.11999/JEIT250525

大范围多径时延扩展信道实时模拟的高效存储方法

doi: 10.11999/JEIT250525 cstr: 32379.14.JEIT250525
基金项目: 国家重点研发计划(2023YFF0717700)
详细信息
    作者简介:

    李维实:男,博士生,研究方向为电路与系统、数字信号处理、无线通信

    周辉:男,高级工程师,研究方向为电磁空间认知与智能控制、数字信号处理

    焦逊:男,高级工程师,研究方向为电磁空间认知与智能控制、数字信号处理

    徐强:男,副研究员,研究方向为无线与移动通信系统、数字信号处理

    唐友喜:男,教授,研究方向为分布式MIMO信号处理,无线通信抗干扰技术

    通讯作者:

    周辉 zhouhui-lg@163.com

  • 中图分类号: TN92

Efficient Storage Method for Real-Time Simulation of Wide-Range Multipath Delay Spread Channels

Funds: The National Key Research and Development Program of China (2023YFF0717700)
  • 摘要: 随着空中平台向通信与感知一体化、成像和环境重构等复杂无线场景的快速发展,对大范围多径时延扩展信道的实时模拟提出了更高要求。现有实时信道模拟方法在处理大范围多径时延扩展信道时,面临硬件存储资源需求急剧膨胀的挑战。针对这一问题,该文提出一种基于动态约束建模的优化稀疏抽头延迟线算法。该算法通过深入分析抽头间的时延依赖关系,精确建立存储器资源占用、所需模拟多径数量与可模拟的多径时延扩展范围三者之间的解析约束关系模型,从而实现了目标性能约束下的资源需求量化设计。理论分析和仿真结果表明,相较于现有算法,所提算法在确保多径时延扩展范围精确模拟的同时,在典型配置下存储空间占用可减少50%以上。这一成果为大范围多径时延扩展实时信道模拟系统设计提供了关键技术支撑。
  • 图  1  大范围多径时延扩展信道场景

    图  2  现有实时信道模拟方法

    图  3  稀疏抽头延迟线算法框图

    图  4  设计实例中多径时延变化和块存储器延迟配置

    图  5  3种算法在不同维度下的存储资源对比

    图  6  算法验证FPGA平台XCVU13P

    图  7  存储资源独占算法和时分复用算法验证框图

    图  8  优化稀疏抽头延迟线算法验证框图

    表  1  3种算法实现所需FPGA资源对比

    算法 LUTs Registers CARRY8 F7 Muxes Block
    RAM Tile
    存储资源独占 745 145 40 0 28
    存储资源时分复用 969 1093 40 0 14
    优化稀疏抽头延迟线 459 548 31 36 7
    下载: 导出CSV
  • [1] PAPALAMPROU I, ARMENIAKOS G, STRATAKOS I, et al. Flexible real-time emulation of fading channels on SoC-FPGA devices[C]. 2024 Panhellenic Conference on Electronics & Telecommunications (PACET), Thessaloniki, Greece, 2024: 1–6. doi: 10.1109/PACET60398.2024.10497075.
    [2] ZHU Qiuming, ZHAO Zikun, MAO Kai, et al. A real-time hardware emulator for 3D non-stationary U2V channels[J]. IEEE Transactions on Circuits and Systems I: Regular Papers, 2021, 68(9): 3951–3964. doi: 10.1109/TCSI.2021.3087777.
    [3] YANG Yang, LI Tingpeng, CHEN Xiaomin, et al. Real-time ray-based channel generation and emulation for UAV communications[J]. Chinese Journal of Aeronautics, 2022, 35(9): 106–116. doi: 10.1016/j.cja.2021.12.008.
    [4] PETRUT I R, IACOBAN R, and BALINT C. CELEOS-SDR based satellite channel emulator[C]. 2024 47th International Conference on Telecommunications and Signal Processing (TSP), Prague, Czech Republic, 2024: 119–122. doi: 10.1109/TSP63128.2024.10605939.
    [5] RUSCA R, RAVIGLIONE F, CASETTI C, et al. Mobile RF scenario design for massive-scale wireless channel emulators[C]. 2023 Joint European Conference on Networks and Communications & 6G Summit (EuCNC/6G Summit), Gothenburg, Sweden, 2023: 675–680. doi: 10.1109/EuCNC/6GSummit58263.2023.10188319.
    [6] LI Jingquan, LIU Yu, ZHANG Jingfan, et al. Hardware implementation of a novel UAV multi-trajectory dual-mobility channel emulator[C]. 2024 IEEE Wireless Communications and Networking Conference (WCNC), Dubai, United Arab Emirates, 2024: 1–6. doi: 10.1109/WCNC57260.2024.10570680.
    [7] KEERATIVORANAN N, SAITO K, and TAKADA J I. Grid-based channel modeling technique for scenario-specific wireless channel emulator based on path parameters interpolation[J]. IEEE Open Journal of the Communications Society, 2024, 5: 1724–1739. doi: 10.1109/OJCOMS.2024.3373538.
    [8] YANG Yang, ZHU Qiuming, FENG Ruirui, et al. High-efficient ray-based hardware emulator for UAV channel digital twin[C]. 2021 IEEE 21st International Conference on Communication Technology (ICCT), Tianjin, China, 2021: 1486–1490. doi: 10.1109/ICCT52962.2021.9657988.
    [9] 房胜, 毛开, 王满喜, 等. 基于FPGA的无人机非平稳信道动态模拟研究[J]. 航空兵器, 2024, 31(1): 89–96. doi: 10.12132/ISSN.1673-5048.2023.0087.

    FANG Sheng, MAO Kai, WANG Manxi, et al. Research on dynamic emulation of non-stationary channel of unmanned aerial vehicles based on FPGA[J]. Aero Weaponry, 2024, 31(1): 89–96. doi: 10.12132/ISSN.1673-5048.2023.0087.
    [10] 周生奎, 陈应兵, 白云鹏. 基于DDR3的群延迟模拟技术研究与实现[J]. 国外电子测量技术, 2018, 37(8): 82–85. doi: 10.19652/j.cnki.femt.1800875.

    ZHOU Shengkui, CHEN Yingbing, and BAI Yunpeng. Research and implementation on the group delay simulation based on DDR3[J]. Foreign Electronic Measurement Technology, 2018, 37(8): 82–85. doi: 10.19652/j.cnki.femt.1800875.
    [11] DONG Shuli, ZHANG Taotao, and WANG Yan. A real-time simulation design of multi-path fading channel based on SOS method[C]. 2019 IEEE 4th Advanced Information Technology, Electronic and Automation Control Conference (IAEAC), Chengdu, China, 2019: 2550–2554. doi: 10.1109/IAEAC47372.2019.8997884.
    [12] AO Bin, YANG Jingya, HAN Runyu, et al. Channel measurements and sparsity analysis for air-to-ground mmWave communications[C]. ICC 2024 - IEEE International Conference on Communications, Denver, USA, 2024: 1909–1914. doi: 10.1109/ICC51166.2024.10622947.
    [13] MALIATSOS K N, LOULIS P, CHRONOPOULOS M, et al. The power delay profile of the mobile channel for above the sea propagation[C]. IEEE Vehicular Technology Conference, Montreal, Canada, 2006: 1–5. doi: 10.1109/VTCF.2006.20.
    [14] MAO Xichen, WANG Chengxiang, and CHANG Hengtai. A 3D non-stationary geometry-based stochastic model for 6G UAV air-to-air channels[C]. 2021 13th International Conference on Wireless Communications and Signal Processing (WCSP), Changsha, China, 2021: 1–5. doi: 10.1109/WCSP52459.2021.9613702.
    [15] TEHRANI-MOAYYED M, BONATI L, JOHARI P, et al. Creating RF scenarios for large-scale, real-time wireless channel emulators[C]. 2021 19th Mediterranean Communication and Computer Networking Conference (MedComNet), Ibiza, Spain, 2021: 1–8. doi: 10.1109/MedComNet52149.2021.9501275.
    [16] FU C C, WANG T P, CHANG Kangchuan, et al. A real-time digital baseband channel emulation system for OFDM communications[C]. APCCAS 2006 - 2006 IEEE Asia Pacific Conference on Circuits and Systems, Singapore, Singapore, 2006: 984–987. doi: 10.1109/APCCAS.2006.342227.
    [17] ZHOU Shun, OU Gang, and TANG Xiaomei. Satellite navigation multipath channel sparse reconstruction scheme applied in performance evaluation of constellation channel emulation[C]. 2021 13th International Symposium on Antennas, Propagation and EM Theory (ISAPE), Zhuhai, China, 2021: 1–3. doi: 10.1109/ISAPE54070.2021.9753259.
    [18] CHAUDHARI A and BRAUN M. A scalable FPGA architecture for flexible, large-scale, real-time RF channel emulation[C]. 2018 13th International Symposium on Reconfigurable Communication-Centric Systems-on-Chip, Lille, France, 2018: 1–8. doi: 10.1109/ReCoSoC.2018.8449390.
  • 加载中
图(8) / 表(1)
计量
  • 文章访问数:  20
  • HTML全文浏览量:  12
  • PDF下载量:  2
  • 被引次数: 0
出版历程
  • 收稿日期:  2025-06-09
  • 修回日期:  2025-09-04
  • 网络出版日期:  2025-09-21

目录

    /

    返回文章
    返回