高级搜索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

融合编码校验特性的高效ORBGRAND译码器设计

雷升 梁展华 田静 周杨灿

雷升, 梁展华, 田静, 周杨灿. 融合编码校验特性的高效ORBGRAND译码器设计[J]. 电子与信息学报. doi: 10.11999/JEIT250501
引用本文: 雷升, 梁展华, 田静, 周杨灿. 融合编码校验特性的高效ORBGRAND译码器设计[J]. 电子与信息学报. doi: 10.11999/JEIT250501
LEI Sheng, LIANG Zhanhua, TIAN Jing, ZHOU Yangcan. Design of Efficient ORBGRAND Decoders with Parity-Check Constraint[J]. Journal of Electronics & Information Technology. doi: 10.11999/JEIT250501
Citation: LEI Sheng, LIANG Zhanhua, TIAN Jing, ZHOU Yangcan. Design of Efficient ORBGRAND Decoders with Parity-Check Constraint[J]. Journal of Electronics & Information Technology. doi: 10.11999/JEIT250501

融合编码校验特性的高效ORBGRAND译码器设计

doi: 10.11999/JEIT250501 cstr: 32379.14.JEIT250501
基金项目: 国家密码科学基金(2025NCSF02002),江苏省基础研究计划重点项目(BK20243038),中国科学技术协会青年人才托举工程项目(2023QNRC001)
详细信息
    作者简介:

    雷升:男,硕士生,研究方向为集成电路设计

    梁展华:男,硕士生,研究方向为集成电路设计

    田静:女,助理教授,研究方向为集成电路优化设计、后量子密码学、AI同态安全

    周杨灿:男,博士后,研究方向为信号与信息处理的算法与芯片实现

    通讯作者:

    周杨灿 yczhou@smail.nju.edu.cn

  • 中图分类号: TN47

Design of Efficient ORBGRAND Decoders with Parity-Check Constraint

Funds: The National Cryptography Fund of China (2025NSF02002), The Key Project of Jiangsu Basic Research Program (BK20243338), The Youth Talent Support Project of China Association for Science and Technology (2023QNRC001)
  • 摘要: 有序可靠位猜测随机加性噪声译码(ORBGRAND)凭借其平均时延短、通用等优点受到广泛关注。然而,目前ORBGRAND算法和硬件实现仍然面临挑战,如最差时延长、吞吐率受限等。为了改善上述问题,该文提出将特殊的编码校验关系融入现有串行和展开架构的ORBGRAND译码器以提升硬件效率。针对串行架构,利用全局奇偶校验比特控制逻辑重量和汉明重量的迭代过程,跳过部分无效错误模式的生成与校验过程;针对展开架构,根据全局奇偶校验比特将错误模式按照HW奇偶性进行分类存储与测试。采用现有文献中的归一化方法处理后的硬件实现结果表明,所提优化的串行架构译码器吞吐率提升了80.9%,面积效率提升了48.1%;所提优化的展开架构译码器吞吐率提升了584%,面积效率提升了1223%。
  • 图  1  融合校验关系的ORBGRAND算法流程

    图  2  融合校验关系的ORBGRAND串行架构

    图  3  串行架构的校验模块和权重生成模块结构示意图

    图  4  错误模式查询次数与$ {E}_{\mathrm{b}}/{N}_{0} $,误帧率FER与$ {E}_{\mathrm{b}}/{N}_{0} $关系的仿真结果

    图  5  融合校验关系的ORBGRAND展开架构

    表  1  本文所提串行架构译码器综合结果及其与文献[13]的比较

    本工作串行
    架构
    现有串行
    架构[13]
    实现类型综合综合
    测试的编码方案CA-PolarCA-Polar
    码率240/256240/256
    工艺 (nm)2840
    供电电压 (V)0.91.0
    频率 (MHz)400180
    延迟 (ns)7.2518.75
    面积 (mm2)0.180.3
    吞吐率 (Gb/s)33.112.8
    面积效率 (Gbps/mm2)183.942.6
    目标 FER10–710–7
    面积@(28nm, 0.9V) (mm2)0.180.15
    频率@(28nm, 0.9V) (MHz)400257
    延迟@(28nm, 0.9V) (ns)7.2513.11
    吞吐率@(28nm, 0.9V) (Gb/s)33.118.3
    面积效率@(28nm, 0.9V) (Gbps/mm2)183.9124.2
    注:归一化:面积:$ {S}^{2} $,频率:$ 1/S $,延迟:$ S $,吞吐率:$ 1/S $,面积效率:$ 1/{S}^{3} $,$ \text{S} $ 为目标工艺/当前工艺。
    下载: 导出CSV

    表  2  本文所提展开架构译码器综合结果及其与文献[16]的比较

    本工作展开架构现有展开架构[16]
    ABCD
    实现类型综合综合综合综合
    测试的编码方案CA-PolarCA-PolarCA-PolarCA-Polar
    码率105/128105/128105/128105/128
    工艺 (nm)282877
    供电电压 (V)0.90.90.50.5
    单阶段存储数/单阶段校验数1024/512512/256512/512256/256
    译码周期10181834
    频率 (MHz)6161053616701
    延迟 (cc)-(ns)17-25.4925-22.7525-40.5841-58.49
    面积 (mm2)24.5127.823.383.70
    吞吐率 (Gb/s)64.68110.5764.6873.61
    面积效率 (Gbps/mm2)2.643.9719.1319.89
    面积@(28nm, 0.9V) (mm2)24.5127.8254.0859.20
    频率@(28nm, 0.9V) (MHz)6161053154175
    延迟@(28nm, 0.9V) (ns)25.4922.75162.32233.96
    吞吐率@(28nm, 0.9V) (Gb/s)64.68110.5716.1718.40
    面积效率@(28nm, 0.9V) (Gbps/mm2)2.643.970.300.31
    注:归一化:面积:$ {S}^{2} $,频率:$ 1/S $,延迟:$ S $,吞吐率:$ 1/S $,面积效率:$ 1/{S}^{3} $,$ \mathrm{S} $为目标工艺/当前工艺。
    下载: 导出CSV
  • [1] DUFFY K R, LI Jiange, and MÉDARD M. Capacity-achieving guessing random additive noise decoding[J]. IEEE Transactions on Information Theory, 2019, 65(7): 4023–4040. doi: 10.1109/TIT.2019.2896110.
    [2] DUFFY K R, YUAN Peihong, GRIFFIN J, et al. Soft-output guessing codeword decoding[J]. IEEE Communications Letters, 2025, 29(2): 328–332. doi: 10.1109/lcomm.2024.3516486.
    [3] MILLWARD J A, DUFFY K R, RANGASWAMY M, et al. Enhancing guessing random additive noise decoding using channel estimation[C]. 2024 IEEE 25th International Workshop on Signal Processing Advances in Wireless Communications (SPAWC), Lucca, Italy, 2024: 676–680. doi: 10.1109/SPAWC60668.2024.10694171.
    [4] WAN Li and ZHANG Wenyi. Approaching maximum likelihood decoding performance via reshuffling ORBGRAND[C]. 2024 IEEE International Symposium on Information Theory (ISIT), Athens, Greece, 2024: 31–36. doi: 10.1109/ISIT57864.2024.10619402.
    [5] YUAN Peihong, MÉDARD M, GALLIGAN K, et al. Soft-output (SO) GRAND and iterative decoding to outperform LDPC codes[J]. IEEE Transactions on Wireless Communications, 2025, 24(4): 3386–3399. doi: 10.1109/twc.2025.3530880.
    [6] BLANC L D, HERRMANN V, REN Yuqing, et al. A GRANDAB decoder with 8.48 gbps worst-case throughput in 65nm CMOS[C]. 2024 IEEE European Solid-State Electronics Research Conference (ESSERC), Bruges, Belgium, 2024: 685–688. doi: 10.1109/ESSERC62670.2024.10719587.
    [7] DUFFY K R and MÉDARD M. Guessing random additive noise decoding with soft detection symbol reliability information - SGRAND[C]. 2019 IEEE International Symposium on Information Theory (ISIT), Paris, France, 2019: 480–484. doi: 10.1109/ISIT.2019.8849297.
    [8] DUFFY K R, MÉDARD M, and AN Wei. Guessing random additive noise decoding with symbol reliability information (SRGRAND)[J]. IEEE Transactions on Communications, 2022, 70(1): 3–18. doi: 10.1109/TCOMM.2021.3114315.
    [9] DUFFY K R, AN Wei, and MÉDARD M. Ordered reliability bits guessing random additive noise decoding[J]. IEEE Transactions on Signal Processing, 2022, 70: 4528–4542. doi: 10.1109/TSP.2022.3203251.
    [10] CONDO C, BIOGLIO V, and LAND I. High-performance low-complexity error pattern generation for ORBGRAND decoding[C]. 2021 IEEE Globecom Workshops (GC Wkshps), Madrid, Spain, 2021: 1–6. doi: 10.1109/GCWkshps52748.2021.9682165.
    [11] JI Chao, YOU Xiaohu, ZHANG Chuan, et al. Efficient ORBGRAND implementation with parallel noise sequence generation[J]. IEEE Transactions on Very Large Scale Integration (VLSI) Systems, 2025, 33(2): 435–448. doi: 10.1109/TVLSI.2024.3466474.
    [12] ABBAS S M, JALALEDDINE M, TSUI C Y, et al. Improved step-GRAND: Low-latency soft-input guessing random additive noise decoding[J]. IEEE Transactions on Very Large Scale Integration (VLSI) Systems, 2025, 33(4): 1028–1041. doi: 10.1109/tvlsi.2025.3529637.
    [13] RIAZ A, YASAR A, ERCAN F, et al. A sub-0.8-pJ/bit universal soft-detection decoder using ORBGRAND[J]. IEEE Journal of Solid-State Circuits, 2025, 60(7): 2645–2659. doi: 10.1109/JSSC.2024.3502240.
    [14] ABBAS S M, TONNELLIER T, ERCAN F, et al. High-throughput and energy-efficient VLSI architecture for ordered reliability bits GRAND[J]. IEEE Transactions on Very Large Scale Integration (VLSI) Systems, 2022, 30(6): 681–693. doi: 10.1109/TVLSI.2022.3153605.
    [15] XIAO Jiayu, ZHOU Yangcan, SONG Suwen, et al. A low-latency and area-efficient ORBGRAND decoder for polar codes[C]. 2023 4th Information Communication Technologies Conference (ICTC), Nanjing, China, 2023: 10–15. doi: 10.1109/ICTC57116.2023.10154861.
    [16] CONDO C. A fixed latency ORBGRAND decoder architecture with LUT-aided error-pattern scheduling[J]. IEEE Transactions on Circuits and Systems I: Regular Papers, 2022, 69(5): 2203–2211. doi: 10.1109/tcsi.2022.3150583.
    [17] ABBAS S M, JALALEDDINE M, and GROSS W J. List-GRAND: A practical way to achieve maximum likelihood decoding[J]. IEEE Transactions on Very Large Scale Integration (VLSI) Systems, 2023, 31(1): 43–54. doi: 10.1109/tvlsi.2022.3223692.
    [18] GEISELHART M, KRIEG F, CLAUSIUS J, et al. 6G: A welcome chance to unify channel coding?[J]. IEEE BITS the Information Theory Magazine, 2023, 3(1): 67–80. doi: 10.1109/MBITS.2023.3322974.
    [19] TATARIA H, SHAFI M, MOLISCH A F, et al. 6G wireless systems: Vision, requirements, challenges, insights, and opportunities[J]. Proceedings of the IEEE, 2021, 109(7): 1166–1199. doi: 10.1109/JPROC.2021.3061701.
    [20] GE Yingmeng, JI Zhenhao, HUANG Yongming, et al. Automatic hybrid-precision quantization for MIMO detectors[J]. IEEE Transactions on Signal Processing, 2023, 71: 1039–1052. doi: 10.1109/tsp.2023.3240511.
    [21] GIARD P, BALATSOUKAS-STIMMING A, MULLER T C, et al. PolarBear: A 28-nm FD-SOI ASIC for decoding of polar codes[J]. IEEE Journal on Emerging and Selected Topics in Circuits and Systems, 2017, 7(4): 616–629. doi: 10.1109/jetcas.2017.2745704.
    [22] HU Shuai, HAN Kaining, WANG Fujie, et al. Hybrid stochastic LDPC decoder with fully correlated stochastic computation[J]. IEEE Transactions on Circuits and Systems I: Regular Papers, 2022, 69(9): 3643–3654. doi: 10.1109/tcsi.2022.3179282.
    [23] PENG Guiqiang, LIU Leibo, ZHOU Sheng, et al. A 1.58 Gbps/W 0.40 Gbps/mm2 ASIC Implementation of MMSE Detection for 128×864 -QAM massive MIMO in 65 nm CMOS[J]. IEEE Transactions on Circuits and Systems I: Regular Papers, 2018, 65(5): 1717–1730. doi: 10.1109/tcsi.2017.2754282.
    [24] ZHANG Qichen, CHEN Yun, LI Shixian, et al. A high-performance stochastic LDPC decoder architecture designed via correlation analysis[J]. IEEE Transactions on Circuits and Systems I: Regular Papers, 2020, 67(12): 5429–5442. doi: 10.1109/tcsi.2020.3003457.
  • 加载中
图(5) / 表(2)
计量
  • 文章访问数:  13
  • HTML全文浏览量:  9
  • PDF下载量:  4
  • 被引次数: 0
出版历程
  • 收稿日期:  2025-06-03
  • 修回日期:  2025-09-14
  • 网络出版日期:  2025-09-16

目录

    /

    返回文章
    返回