| [1] |
ROSTOV V V, GUNIN A V, TSYGANKOV R V, et al. Two-wave Cherenkov oscillator with moderately oversized slow-wave structure[J]. IEEE Transactions on Plasma Science, 2018, 46(1): 33–42. doi: 10.1109/TPS.2017.2773661.
|
| [2] |
王冬, 秦奋, 陈代兵, 等. L波段双阶梯阴极磁绝缘线振荡器的粒子模拟与实验研究[J]. 强激光与粒子束, 2010, 22(4): 857–860. doi: 10.3788/HPLPB20102204.0857.WANG Dong, QIN Fen, CHEN Daibing, et al. Particle simulation and experimental research on L-band double ladder cathode MILO[J]. High Power Laser and Particle Beams, 2010, 22(4): 857–860. doi: 10.3788/HPLPB20102204.0857.
|
| [3] |
HAWORTH M, HENDRICK K, ENGLERT T, et al. Recent results in the hard-tube MILO experiment[C]. IEEE Conference Record - Abstracts. 1997 IEEE International Conference on Plasma Science, San Diego, USA, 1997: 190. doi: 10.1109/PLASMA.1997.604783.
|
| [4] |
ZHANG Jiande, GE Xingjun, ZHANG Jun, et al. Research progresses on Cherenkov and transit-time high-power microwave sources at NUDT[J]. Matter and Radiation at Extremes, 2016, 1(3): 163–178. doi: 10.1016/j.mre.2016.04.001.
|
| [5] |
肖仁珍. 相对论返波管研究进展[J]. 现代应用物理, 2022, 13(2): 020101. doi: 10.12061/j.issn.2095-6223.2022.020101.XIAO Renzhen. Research progress of relativistic backward wave oscillator[J]. Modern Applied Physics, 2022, 13(2): 020101. doi: 10.12061/j.issn.2095-6223.2022.020101.
|
| [6] |
XIAO Renzhen, CHEN Kun, WANG Jiaoyin, et al. Generation of superradiance pulses exceeding 100 GW based on an oversized coaxial Cherenkov generator with profiled slow wave structure and coaxial coupler[J]. IEEE Electron Device Letters, 2024, 45(7): 1321–1324. doi: 10.1109/LED.2024.3401032.
|
| [7] |
XIAO Renzhen, CHENG Renjie, CHEN Kun, et al. A cross-band high-power microwave generator with wide frequency tunability based on a relativistic magnetron and a radial transit-time oscillator[J]. IEEE Transactions on Electron Devices, 2024, 71(1): 840–845. doi: 10.1109/TED.2023.3336636.
|
| [8] |
MIAO Tianze, XIAO Renzhen, SHI Yanchao, et al. Process and suppression method of backward current in a diode packaged with permanent magnet[J]. IEEE Transactions on Electron Devices, 2024, 71(8): 4985–4990. doi: 10.1109/TED.2024.3409675.
|
| [9] |
CHEN Kun, XIAO Renzhen, ZHAI Yonggui, et al. Asymmetric mode competition in an X-band dual-mode relativistic backward wave oscillator[J]. IEEE Transactions on Electron Devices, 2024, 71(7): 4300–4305. doi: 10.1109/TED.2024.3397633.
|
| [10] |
XIAO Renzhen, ZHANG X W, ZHANG L J, et al. Efficient generation of multi-gigawatt power by a klystron-like relativistic backward wave oscillator[J]. Laser and Particle Beams, 2010, 28(3): 505–511. doi: 10.1017/S0263034610000509.
|
| [11] |
XIAO Renzhen, CHEN Changhua, SUN Jun, et al. A high-power high-efficiency klystronlike relativistic backward wave oscillator with a dual-cavity extractor[J]. Applied Physics Letters, 2011, 98(10): 101502. doi: 10.1063/1.3562612.
|
| [12] |
XIAO Renzhen, SHI Yanchao, WANG Huida, et al. Efficient generation of multi-gigawatt power by an X-band dual-mode relativistic backward wave oscillator operating at low magnetic field[J]. Physics of Plasmas, 2020, 27(4): 043102. doi: 10.1063/5.0002361.
|
| [13] |
XIAO Renzhen, DENG Yuqun, WANG Yue, et al. Power combiner with high power capacity and high combination efficiency for two phase-locked relativistic backward wave oscillators[J]. Applied Physics Letters, 2015, 107(13): 133502. doi: 10.1063/1.4932065.
|
| [14] |
LI Xiaoze, SONG Wei, TAN Weibing, et al. Experimental study of a Ku-band RBWO packaged with permanent magnet[J]. IEEE Transactions on Electron Devices, 2019, 66(10): 4408–4412. doi: 10.1109/TED.2019.2936835.
|
| [15] |
YANG Dewen, CHEN Changhua, TENG Yan, et al. Efficiency improvement of a klystron-like relativistic traveling wave oscillator with a ridge extractor and permanent magnet over the dual cavity extractor[J]. IEEE Electron Device Letters, 2024, 45(4): 696–699. doi: 10.1109/LED.2024.3368284.
|
| [16] |
BENFORD J, SWEGLE J A, and SCHAMILOGLU E, 江伟华, 张驰, 译. 高功率微波[M]. 2版. 北京: 国防工业出版社, 2009. (查阅网上资料, 请补充引用页码).BENFORD J, SWEGLE J A, and SCHAMILOGLU E, JIANG Weihua, ZHANG Chi, translation. High Power Microwaves[M]. 2nd ed. Beijing: National Defense Industry Press, 2009.
|
| [17] |
LEVINE J S, BENFORD J N, COURTNEY R, et al. Operational characteristics of a phase-locked module of relativistic magnetrons[C]. Proceedings of SPIE 1407, Intense Microwave and Particle Beams II, Los Angeles, USA, 1991: 74–82. doi: 10.1117/12.43482.
|
| [18] |
SZE H, SMITH R R, BENFORD J N, et al. Phase-locking of strongly coupled relativistic magnetrons[J]. IEEE Transactions on Electromagnetic Compatibility, 1992, 34(3): 235–241. doi: 10.1109/15.155835.
|
| [19] |
BENFORD J, SZE H, WOO W, et al. Phase locking of relativistic magnetrons[J]. Physical Review Letters, 1989, 62(8): 969–971. doi: 10.1103/PhysRevLett.62.969.
|
| [20] |
WOO W, BENFORD J, FITTINGHOFF D, et al. Phase locking of high-power microwave oscillators[J]. Journal of Applied Physics, 1989, 65(2): 861–866. doi: 10.1063/1.343079.
|
| [21] |
闫孝鲁, 张晓萍, 李阳梅. X波段新型低阻抗高功率微波源的模拟研究[J]. 物理学报, 2016, 65(13): 138402. doi: 10.7498/aps.65.138402.YAN Xiaolu, ZHANG Xiaoping, and LI Yangmei. Particle-in-cell simulation of a new X-band low-impedance high power microwave source[J]. Acta Physica Sinica, 2016, 65(13): 138402. doi: 10.7498/aps.65.138402.
|
| [22] |
黎深根, 储开荣, 李冬凤, 等. 应用于高功率微波的速调管和正交场器件[J]. 现代应用物理, 2023, 14(3): 030503. doi: 10.12061/j.issn.2095-6223.2023.030503.LI Shengen, CHU Kairong, LI Dongfeng, et al. Klystron and crossed-field device for high power microwave applications[J]. Modern Applied Physics, 2023, 14(3): 030503. doi: 10.12061/j.issn.2095-6223.2023.030503.
|
| [23] |
JU Jinchuan, GE Xingjun, ZHANG Wei, et al. Coherent combining of phase-steerable high power microwaves generated by two X-band triaxial klystron amplifiers with pulsed magnetic fields[J]. Physical Review Letters, 2023, 130(8): 085002. doi: 10.1103/PhysRevLett.130.085002.
|
| [24] |
ZHOU Fugui, ZHANG Dian, ZHANG Jun, et al. Design of a cross-band frequency hopping high power microwave oscillator with permanent magnet package[J]. Physics of Plasmas, 2023, 30(10): 103504. doi: 10.1063/5.0167193.
|
| [25] |
LIU Zhenbang, SONG Falun, JIN Hui, et al. Coherent combination of power in space with Two X-band gigawatt coaxial multi-beam relativistic klystron amplifiers[J]. IEEE Electron Device Letters, 2022, 43(2): 284–287. doi: 10.1109/LED.2021.3137927.
|
| [26] |
李永东, 王洪广, 刘纯亮, 等. 高功率微波器件2.5维通用粒子模拟软件——尤普[J]. 强激光与粒子束, 2009, 21(12): 1866–1870.LI Yongdong, WANG Hongguang, LIU Chunliang, et al. 2.5-dimensional electromagnetic particle-in-cell code-UNIPIC for high power microwave simulations[J]. High Power Laser and Particle Beams, 2009, 21(12): 1866–1870.
|
| [27] |
LI Yongdong, HE Feng, and LIU Chunliang. A volume-weighting cloud-in-cell model for particle simulation of axially symmetric plasmas[J]. Plasma Science and Technology, 2005, 7(1): 2653–2656. doi: 10.1088/1009-0630/7/1/012.
|
| [28] |
YANG Wenjin, LI Yongdong, WANG Hongguang, et al. Multi-objective optimization of high-power microwave sources based on multi-criteria decision-making and multi-objective micro-genetic algorithm[J]. IEEE Transactions on Electron Devices, 2023, 70(7): 3892–3898. doi: 10.1109/TED.2023.3280151.
|
| [29] |
WANG Jianguo, ZHANG Dianhui, LIU Chunliang, et al. UNIPIC code for simulations of high power microwave devices[J]. Physics of Plasmas, 2009, 16(3): 033108. doi: 10.1063/1.3091931.
|
| [30] |
吴小玲. 同轴周期永磁聚焦相对论切伦柯夫发生器研究[D]. [博士论文], 清华大学, 2021. doi: 10.27266/d.cnki.gqhau.2021.000148.WU Xiaoling. Research on relativistic Cerenkov generator focused by coaxial periodic permanent magnet[D]. [Ph. D. dissertation], Tsinghua University, 2021. doi: 10.27266/d.cnki.gqhau.2021.000148.
|