高级搜索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于单磁体的双路强流相对论电子束的产生与优化研究

安晨翔 霍少飞 史彦超 翟永贵 肖仁珍 陈昌华 陈坤 黄慧杰 申留洋 罗凯文 王洪广 李雨晴

安晨翔, 霍少飞, 史彦超, 翟永贵, 肖仁珍, 陈昌华, 陈坤, 黄慧杰, 申留洋, 罗凯文, 王洪广, 李雨晴. 基于单磁体的双路强流相对论电子束的产生与优化研究[J]. 电子与信息学报. doi: 10.11999/JEIT250487
引用本文: 安晨翔, 霍少飞, 史彦超, 翟永贵, 肖仁珍, 陈昌华, 陈坤, 黄慧杰, 申留洋, 罗凯文, 王洪广, 李雨晴. 基于单磁体的双路强流相对论电子束的产生与优化研究[J]. 电子与信息学报. doi: 10.11999/JEIT250487
AN Chenxiang, HUO Shaofei, SHI Yanchao, ZHAI Yonggui, XIAO Renzhen, CHEN Changhua, CHEN Kun, HUANG Huijie, SHEN Liuyang, LUO Kaiwen, WANG HongGuang, LI YuQing. Research on Generation and Optimization of Dual-channel High-current Relativistic Electron Beams Based on a Single Magnet[J]. Journal of Electronics & Information Technology. doi: 10.11999/JEIT250487
Citation: AN Chenxiang, HUO Shaofei, SHI Yanchao, ZHAI Yonggui, XIAO Renzhen, CHEN Changhua, CHEN Kun, HUANG Huijie, SHEN Liuyang, LUO Kaiwen, WANG HongGuang, LI YuQing. Research on Generation and Optimization of Dual-channel High-current Relativistic Electron Beams Based on a Single Magnet[J]. Journal of Electronics & Information Technology. doi: 10.11999/JEIT250487

基于单磁体的双路强流相对论电子束的产生与优化研究

doi: 10.11999/JEIT250487 cstr: 32379.14.JEIT250487
基金项目: 国家自然科学基金资助项目(12175182)
详细信息
    作者简介:

    安晨翔:男,助理研究员,研究方向为高功率微波产生技术

    霍少飞:男,副研究员,研究方向为高功率微波技术

    史彦超:男,研究员,研究方向为高功率微波产生技术

    翟永贵:男,助理教授,研究方向为高功率微波击穿数值模拟技术

    肖仁珍:女,研究员,研究方向为相对论电子学与高功率微波产生

    陈昌华:男,研究员,研究方向为高功率微波产生技术

    陈坤:男,助理研究员,研究方向为高功率微波产生技术

    黄慧杰:男,工程师,研究方向为高功率微波产生技术

    申留洋:男,助理研究员,研究方向为高功率微波产生技术

    罗凯文:男,助理工程师,研究方向为高功率微波产生技术

    王洪广:男,教授,研究方向为太赫兹生物物理学、粒子模拟技术、等离子体技术、气体放电及其应用等

    李雨晴:女,硕士研究生,研究方向为相对论返波管优化设计

    通讯作者:

    安晨翔 anchenxiang@nint.ac.cn

  • 中图分类号: TP393

Research on Generation and Optimization of Dual-channel High-current Relativistic Electron Beams Based on a Single Magnet

Funds: National Natural Science Foundation of China (12175182)
  • 摘要: 高功率微波(HPM)技术作为现代国防军事和民用科技领域的战略性前沿技术,正引发全球广泛关注和深入研究。然而,受物理机制、材料性能以及制造工艺等多重因素制约,单个HPM源的微波输出功率在提升过程中遭遇了瓶颈,难以实现突破性增长。为突破这一限制,研究人员提出了HPM合成技术,该技术有效地整合多个HPM源,成功实现了峰值功率输出的显著提升,为HPM技术的发展开辟了新的路径。本文聚焦于多路HPM源合成过程中的时间同步难题,设计了一种双路强流相对论电子束产生装置。该装置采用单台脉冲功率驱动源同步驱动双路二极管,并借助单个线圈磁体实现对双路电子束的有效约束。仿真与实验结果表明:该装置能够稳定产生高品质电子束,其电压高达800 kV、电流为20 kA,总功率达到16 GW。在45 ns电压半高宽区间内,电流波形保持稳定,未出现阻抗崩溃现象。此外,通过对阴极引杆结构的改进优化,电子束的角向电流波动从原有的33.2%大幅减小至3.1%,电子束的品质特性得到了显著提升。本研究结果为多路强流相对论电子束的产生和多路HPM源的功率合成提供了可靠的技术基础,在HPM技术领域具有重要的应用前景。
  • 图  1  双路强流相对论电子束的产生装置示意图

    图  2  线圈磁体和双路二极管的位置关系

    图  3  电子束的空间分布

    图  4  距离阴极120 mm位置电流密度(改进前阴极引杆)

    图  5  角向不同区域电流随时间的变化曲线(改进前阴极引杆)

    图  6  稳定阶段电流角向分布(改进前阴极引杆)

    图  7  电场随阴极半径的变化曲线

    图  8  阴极引杆改进前后的几何结构

    图  9  改进阴极引杆后距离阴极120mm位置电流密度

    图  10  改进阴极引杆后角向不同区域电流随时间的变化曲线

    图  11  阴极引杆改进后的电流角向分布

    图  12  分压片所测电压波形(红色)、罗氏线圈所测电流波形(绿色)

    图  13  功率为16 GW时的双路电子束发射过程结果(改进后阴极引杆)

    图  14  功率为16 GW时双路电子束发射过程结果(改进后阴极引杆)

    图  15  线圈磁体和多路二极管的位置关系示意图

  • [1] ROSTOV V V, GUNIN A V, TSYGANKOV R V, et al. Two-wave Cherenkov oscillator with moderately oversized slow-wave structure[J]. IEEE Transactions on Plasma Science, 2018, 46(1): 33–42. doi: 10.1109/TPS.2017.2773661.
    [2] 王冬, 秦奋, 陈代兵, 等. L波段双阶梯阴极磁绝缘线振荡器的粒子模拟与实验研究[J]. 强激光与粒子束, 2010, 22(4): 857–860. doi: 10.3788/HPLPB20102204.0857.

    WANG Dong, QIN Fen, CHEN Daibing, et al. Particle simulation and experimental research on L-band double ladder cathode MILO[J]. High Power Laser and Particle Beams, 2010, 22(4): 857–860. doi: 10.3788/HPLPB20102204.0857.
    [3] HAWORTH M, HENDRICK K, ENGLERT T, et al. Recent results in the hard-tube MILO experiment[C]. IEEE Conference Record - Abstracts. 1997 IEEE International Conference on Plasma Science, San Diego, USA, 1997: 190. doi: 10.1109/PLASMA.1997.604783.
    [4] ZHANG Jiande, GE Xingjun, ZHANG Jun, et al. Research progresses on Cherenkov and transit-time high-power microwave sources at NUDT[J]. Matter and Radiation at Extremes, 2016, 1(3): 163–178. doi: 10.1016/j.mre.2016.04.001.
    [5] 肖仁珍. 相对论返波管研究进展[J]. 现代应用物理, 2022, 13(2): 020101. doi: 10.12061/j.issn.2095-6223.2022.020101.

    XIAO Renzhen. Research progress of relativistic backward wave oscillator[J]. Modern Applied Physics, 2022, 13(2): 020101. doi: 10.12061/j.issn.2095-6223.2022.020101.
    [6] XIAO Renzhen, CHEN Kun, WANG Jiaoyin, et al. Generation of superradiance pulses exceeding 100 GW based on an oversized coaxial Cherenkov generator with profiled slow wave structure and coaxial coupler[J]. IEEE Electron Device Letters, 2024, 45(7): 1321–1324. doi: 10.1109/LED.2024.3401032.
    [7] XIAO Renzhen, CHENG Renjie, CHEN Kun, et al. A cross-band high-power microwave generator with wide frequency tunability based on a relativistic magnetron and a radial transit-time oscillator[J]. IEEE Transactions on Electron Devices, 2024, 71(1): 840–845. doi: 10.1109/TED.2023.3336636.
    [8] MIAO Tianze, XIAO Renzhen, SHI Yanchao, et al. Process and suppression method of backward current in a diode packaged with permanent magnet[J]. IEEE Transactions on Electron Devices, 2024, 71(8): 4985–4990. doi: 10.1109/TED.2024.3409675.
    [9] CHEN Kun, XIAO Renzhen, ZHAI Yonggui, et al. Asymmetric mode competition in an X-band dual-mode relativistic backward wave oscillator[J]. IEEE Transactions on Electron Devices, 2024, 71(7): 4300–4305. doi: 10.1109/TED.2024.3397633.
    [10] XIAO Renzhen, ZHANG X W, ZHANG L J, et al. Efficient generation of multi-gigawatt power by a klystron-like relativistic backward wave oscillator[J]. Laser and Particle Beams, 2010, 28(3): 505–511. doi: 10.1017/S0263034610000509.
    [11] XIAO Renzhen, CHEN Changhua, SUN Jun, et al. A high-power high-efficiency klystronlike relativistic backward wave oscillator with a dual-cavity extractor[J]. Applied Physics Letters, 2011, 98(10): 101502. doi: 10.1063/1.3562612.
    [12] XIAO Renzhen, SHI Yanchao, WANG Huida, et al. Efficient generation of multi-gigawatt power by an X-band dual-mode relativistic backward wave oscillator operating at low magnetic field[J]. Physics of Plasmas, 2020, 27(4): 043102. doi: 10.1063/5.0002361.
    [13] XIAO Renzhen, DENG Yuqun, WANG Yue, et al. Power combiner with high power capacity and high combination efficiency for two phase-locked relativistic backward wave oscillators[J]. Applied Physics Letters, 2015, 107(13): 133502. doi: 10.1063/1.4932065.
    [14] LI Xiaoze, SONG Wei, TAN Weibing, et al. Experimental study of a Ku-band RBWO packaged with permanent magnet[J]. IEEE Transactions on Electron Devices, 2019, 66(10): 4408–4412. doi: 10.1109/TED.2019.2936835.
    [15] YANG Dewen, CHEN Changhua, TENG Yan, et al. Efficiency improvement of a klystron-like relativistic traveling wave oscillator with a ridge extractor and permanent magnet over the dual cavity extractor[J]. IEEE Electron Device Letters, 2024, 45(4): 696–699. doi: 10.1109/LED.2024.3368284.
    [16] BENFORD J, SWEGLE J A, and SCHAMILOGLU E, 江伟华, 张驰, 译. 高功率微波[M]. 2版. 北京: 国防工业出版社, 2009. (查阅网上资料, 请补充引用页码).

    BENFORD J, SWEGLE J A, and SCHAMILOGLU E, JIANG Weihua, ZHANG Chi, translation. High Power Microwaves[M]. 2nd ed. Beijing: National Defense Industry Press, 2009.
    [17] LEVINE J S, BENFORD J N, COURTNEY R, et al. Operational characteristics of a phase-locked module of relativistic magnetrons[C]. Proceedings of SPIE 1407, Intense Microwave and Particle Beams II, Los Angeles, USA, 1991: 74–82. doi: 10.1117/12.43482.
    [18] SZE H, SMITH R R, BENFORD J N, et al. Phase-locking of strongly coupled relativistic magnetrons[J]. IEEE Transactions on Electromagnetic Compatibility, 1992, 34(3): 235–241. doi: 10.1109/15.155835.
    [19] BENFORD J, SZE H, WOO W, et al. Phase locking of relativistic magnetrons[J]. Physical Review Letters, 1989, 62(8): 969–971. doi: 10.1103/PhysRevLett.62.969.
    [20] WOO W, BENFORD J, FITTINGHOFF D, et al. Phase locking of high-power microwave oscillators[J]. Journal of Applied Physics, 1989, 65(2): 861–866. doi: 10.1063/1.343079.
    [21] 闫孝鲁, 张晓萍, 李阳梅. X波段新型低阻抗高功率微波源的模拟研究[J]. 物理学报, 2016, 65(13): 138402. doi: 10.7498/aps.65.138402.

    YAN Xiaolu, ZHANG Xiaoping, and LI Yangmei. Particle-in-cell simulation of a new X-band low-impedance high power microwave source[J]. Acta Physica Sinica, 2016, 65(13): 138402. doi: 10.7498/aps.65.138402.
    [22] 黎深根, 储开荣, 李冬凤, 等. 应用于高功率微波的速调管和正交场器件[J]. 现代应用物理, 2023, 14(3): 030503. doi: 10.12061/j.issn.2095-6223.2023.030503.

    LI Shengen, CHU Kairong, LI Dongfeng, et al. Klystron and crossed-field device for high power microwave applications[J]. Modern Applied Physics, 2023, 14(3): 030503. doi: 10.12061/j.issn.2095-6223.2023.030503.
    [23] JU Jinchuan, GE Xingjun, ZHANG Wei, et al. Coherent combining of phase-steerable high power microwaves generated by two X-band triaxial klystron amplifiers with pulsed magnetic fields[J]. Physical Review Letters, 2023, 130(8): 085002. doi: 10.1103/PhysRevLett.130.085002.
    [24] ZHOU Fugui, ZHANG Dian, ZHANG Jun, et al. Design of a cross-band frequency hopping high power microwave oscillator with permanent magnet package[J]. Physics of Plasmas, 2023, 30(10): 103504. doi: 10.1063/5.0167193.
    [25] LIU Zhenbang, SONG Falun, JIN Hui, et al. Coherent combination of power in space with Two X-band gigawatt coaxial multi-beam relativistic klystron amplifiers[J]. IEEE Electron Device Letters, 2022, 43(2): 284–287. doi: 10.1109/LED.2021.3137927.
    [26] 李永东, 王洪广, 刘纯亮, 等. 高功率微波器件2.5维通用粒子模拟软件——尤普[J]. 强激光与粒子束, 2009, 21(12): 1866–1870.

    LI Yongdong, WANG Hongguang, LIU Chunliang, et al. 2.5-dimensional electromagnetic particle-in-cell code-UNIPIC for high power microwave simulations[J]. High Power Laser and Particle Beams, 2009, 21(12): 1866–1870.
    [27] LI Yongdong, HE Feng, and LIU Chunliang. A volume-weighting cloud-in-cell model for particle simulation of axially symmetric plasmas[J]. Plasma Science and Technology, 2005, 7(1): 2653–2656. doi: 10.1088/1009-0630/7/1/012.
    [28] YANG Wenjin, LI Yongdong, WANG Hongguang, et al. Multi-objective optimization of high-power microwave sources based on multi-criteria decision-making and multi-objective micro-genetic algorithm[J]. IEEE Transactions on Electron Devices, 2023, 70(7): 3892–3898. doi: 10.1109/TED.2023.3280151.
    [29] WANG Jianguo, ZHANG Dianhui, LIU Chunliang, et al. UNIPIC code for simulations of high power microwave devices[J]. Physics of Plasmas, 2009, 16(3): 033108. doi: 10.1063/1.3091931.
    [30] 吴小玲. 同轴周期永磁聚焦相对论切伦柯夫发生器研究[D]. [博士论文], 清华大学, 2021. doi: 10.27266/d.cnki.gqhau.2021.000148.

    WU Xiaoling. Research on relativistic Cerenkov generator focused by coaxial periodic permanent magnet[D]. [Ph. D. dissertation], Tsinghua University, 2021. doi: 10.27266/d.cnki.gqhau.2021.000148.
  • 加载中
图(15)
计量
  • 文章访问数:  11
  • HTML全文浏览量:  7
  • PDF下载量:  1
  • 被引次数: 0
出版历程
  • 修回日期:  2026-01-12
  • 录用日期:  2026-01-12
  • 网络出版日期:  2026-01-27

目录

    /

    返回文章
    返回