高级搜索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

开普勒定律启发的单幅图像细节增强算法

江鹤 孙蟒 郑州 吴沛霖 程德强 周晨

江鹤, 孙蟒, 郑州, 吴沛霖, 程德强, 周晨. 开普勒定律启发的单幅图像细节增强算法[J]. 电子与信息学报. doi: 10.11999/JEIT250455
引用本文: 江鹤, 孙蟒, 郑州, 吴沛霖, 程德强, 周晨. 开普勒定律启发的单幅图像细节增强算法[J]. 电子与信息学报. doi: 10.11999/JEIT250455
JIANG He, SUN Mang, ZHENG Zhou, WU Peilin, CHENG Deqiang, ZHOU Chen. Kepler’s Laws Inspired Single Image Detail Enhancement Algorithm[J]. Journal of Electronics & Information Technology. doi: 10.11999/JEIT250455
Citation: JIANG He, SUN Mang, ZHENG Zhou, WU Peilin, CHENG Deqiang, ZHOU Chen. Kepler’s Laws Inspired Single Image Detail Enhancement Algorithm[J]. Journal of Electronics & Information Technology. doi: 10.11999/JEIT250455

开普勒定律启发的单幅图像细节增强算法

doi: 10.11999/JEIT250455 cstr: 32379.14.JEIT250455
基金项目: 国家自然科学基金项目(52304182, 52204177),国家重点研发计划项目(2023YFC2907600, 2021YFC2902701, 2021YFC2902702)
详细信息
    作者简介:

    江鹤:男,讲师,研究方向为图像处理

    孙蟒:男,硕士生,研究方向为图像细节增强

    郑州:男,硕士生,研究方向为图像细节增强

    吴沛霖:男,本科生,研究方向为图像细节增强

    程德强:男,教授,研究方向为图像处理

    通讯作者:

    周晨 zc111@cumt.edu.cn

  • 中图分类号: TP391

Kepler’s Laws Inspired Single Image Detail Enhancement Algorithm

Funds: The National Natural Science Foundation of China (52304182, 52204177), National Key Research and Development Program of China (2023YFC2907600, 2021YFC2902701, 2021YFC2902702)
  • 摘要: 近年来,基于残差学习的单幅图像细节增强算法备受关注,其通过更新残差层来拟合图像细节层,并与原图像线性叠加实现图像细节增强。然而,此更新过程使用的方法是贪心算法,极易使系统陷入局部最优解,进而限制了系统性能。鉴于此,受行星运动规律的启发,本研究将残差更新类比为行星空间位置的动态调整,借鉴开普勒定律,通过计算确定行星的全局最优位置,进而实现残差层的精准更新。具体而言,将输入图像分块,对每个原始图像块,将其候选图像块视为“行星”,最佳匹配块视为“恒星”。通过计算每个“行星”与原始图像块之间的差异、“行星”的速度和“恒星”的引力,更新“行星”和“恒星”的位置,直至“恒星”的位置达到收敛状态,确定全局最佳匹配块的位置。实验结果显示,本研究提出的算法在视觉效果及量化评估方面均优于当前方法。值得一提的是,在BSDS200数据集4倍增强因子的结果中,本研究提出的方法比当前流行方法QWLS的量化指标PSNR和SSIM分别高出1.51 dB和0.0413,彰显了本研究算法的优越性。
  • 图  1  研究动机原理图

    图  2  基于开普勒优化的单幅细节增强算法框架

    图  3  开普勒优化算法原理图

    图  4  RealSRSet中pattern图像的四倍细节放大对比示意图

    图  5  BSDS200中28075图像的四倍细节放大对比示意图

    图  6  BSDS200中87065图像的四倍细节放大对比示意图

    图  7  强度曲线对比图

    图  8  RealSRSet中ppt3高斯噪声图像四倍细节放大对比图

    图  9  RealSRSet中dog椒盐噪声图像四倍细节放大对比图

    图  11  不同噪声类型和强度下图像细节增强的定量指标曲线图

    图  10  RealSRSet中butterfly2泊松噪声四倍细节放大对比图

    图  12  引力初值与引力衰减速率对PSNR影响的对比图

    图  13  损失函数参数$ \zeta $和$ \xi $的消融实验图

    表  1  增强因子为2和4时在基准数据集下的指标对比

    模型增强因子RealSRSet[33]BSDS200[34]T91[35]
    PSNR(dB)SSIMPSNR(dB)SSIMPSNR(dB)SSIM
    WLS(TOG 2008)[15]X220.160.823517.740.743918.630.7693
    GIF(TPAMI 2012)[8]24.450.890823.890.834423.820.8444
    WGIF(TIP 2015)[9]25.660.886727.910.881624.850.8517
    GGIF(TIP 2015)[10]27.350.925627.410.886526.950.8955
    ZF(ICCV 2017)[31]20.650.773122.560.796624.090.9237
    BFLS(TCSVT 2018)[37]22.510.831823.060.796521.630.7659
    ILS(TOG 2020)[17]26.160.876125.090.831323.480.8093
    DIP(IJCV 2020)[39]23.000.797023.750.765725.870.8232
    IPRH(JEI 2020)[32]26.300.914724.970.862928.480.9102
    TH(TPAMI 2021)[38]20.700.787221.320.762021.430.7616
    DeepFSPIS(ACM MM 2022)[40]26.130.864027.050.864025.670.8260
    CSGIS(CGF 2022)[41]24.500.834025.320.835525.180.8216
    PTF(TOG 2023)[36]18.430.736519.120.711618.760.6939
    MGPNet(SPL 2024)[42]20.560.695323.380.843021.180.7489
    QWLS(IJCV 2024)[18]24.540.889426.830.909927.500.9153
    KLDE(本研究)31.200.971828.590.934432.320.9626
    WLS(TOG 2008)[15]X4------
    GIF(TPAMI 2012)[8]19.530.763818.710.663718.730.6862
    WGIF(TIP 2015)[9]20.870.778122.540.751719.770.7081
    GGIF(TIP 2015)[10]22.090.829421.900.751721.530.7699
    ZF(ICCV 2017)[31]16.600.603818.070.621819.360.6081
    BFLS(TCSVT 2018)[37]18.700.698218.070.617416.950.5898
    ILS(TOG 2020)[17]21.100.749119.810.663618.490.6432
    DIP(IJCV 2020)[39]19.690.698821.160.686022.710.7285
    IPRH(JEI 2020)[32]21.470.803920.140.710523.300.7782
    TH(TPAMI 2021)[38]16.720.635416.770.578616.910.5822
    DeepFSPIS(ACM MM 2022)[40]20.880.722021.590.703020.470.6510
    CSGIS(CGF 2022)[41]19.160.665119.820.652319.770.6344
    PTF(TOG 2023)[36]15.090.577715.170.524414.890.5080
    MGPNet(SPL 2024)[42]16.860.542219.470.707018.020.6018
    QWLS(IJCV 2024)[18]20.270.772121.830.790622.880.7950
    KLDE(本研究)25.870.918123.340.831926.840.8921
    注:黑色加粗字体为每列最优值,加下划线字体为每列次优值
    下载: 导出CSV

    表  2  MOS比较

    数据集增强因子排名前四的算法
    RealSRSet[33]X2KLDE>QWLS[18]>IPRH[32]>ZF[31]
    BSDS200[34]QWLS[18]>KLDE>IPRH[32]>PTF[36]
    T91[35]KLDE>QWLS[18]>ZF[31]>IPRH[32]
    RealSRSet[33]X4KLDE>QWLS[18]>IPRH[32]]>ZF[31]
    BSDS200[34]KLDE>QWLS[18]]>IPRH[32]]>PTF[36]
    T91[35]KLDE>QWLS[18]>ZF[28]>IPRH[32]
    注:黑色加粗字体为本研究算法
    下载: 导出CSV

    表  3  数据集RealSRSet上增强因子为4时运行时间比较

    模型平均运行时间/sPSNR(dB)
    GIF(TPAMI 2012)[8]0.0419.53
    WGIF(TIP 2015)[9]0.0820.87
    GGIF(TIP 2015)[10]0.0822.09
    ZF(ICCV 2017)[31]0.0416.60
    BFLS(TCSVT 2018)[37]0.5218.70
    ILS(TOG 2020)[17]0.4421.10
    DIP(IJCV 2020)[39]4.0119.69
    IPRH(JEI 2020)[32]0.0321.47
    TH(TPAMI 2021)[38]0.3916.72
    DeepFSPIS(ACM MM 2022)[40]0.5220.88
    CSGIS(CGF 2022)[41]0.1619.16
    PTF(TOG 2023)[36]7.6415.09
    MGPNet(SPL 2024)[42]0.2116.86
    QWLS(IJCV 2024)[18]0.3920.27
    KLDE(本研究)13.2925.87
    注:黑色加粗字体为本研究算法
    下载: 导出CSV
  • [1] 徐少平, 熊明海, 周常飞. 利用近清图像空间搜索的深度图像先验降噪模型[J]. 电子与信息学报, 2024, 46(11): 4229–4235. doi: 10.11999/JEIT240114.

    XU Shaoping, XIONG Minghai, ZHOU Changfei. Deep Image Prior Denoising Model Using Relatively Clean Image Space Search[J]. Journal of Electronics & Information Technology, 2024, 46(11): 4229–4235. doi: 10.11999/JEIT240114.
    [2] 程德强, 袁航, 钱建生, 等. 基于深层特征差异性网络的图像超分辨率算法[J]. 电子与信息学报, 2024, 46(3): 1033–1042. doi: 10.11999/JEIT230197.

    CHENG Deqiang, YUAN Hang, QIAN Jiansheng, KOU Qiqi, JIANG He. Image Super-Resolution Algorithms Based on Deep Feature Differentiation Network[J]. Journal of Electronics & Information Technology, 2024, 46(3): 1033–1042. doi: 10.11999/ JEIT230179. doi: 10.11999/JEIT230197.
    [3] Li F, Bai H, Zhao Y. Detail-preserving image super-resolution via recursively dilated residual network[J]. Neurocomputing, 2019, 358: 285–293. doi: 10.1016/j.neucom.2019.05.042.
    [4] Zhao M, Cao G, Huang X, et al. Hybrid transformer-CNN for real image denoising[J]. IEEE Signal Processing Letters, 2022, 29: 1252–1256. doi: 10.1109/LSP.2022.3176486.
    [5] Cao G, Tian H, Yu L, et al. Acceleration of histogram‐based contrast enhancement via selective downsampling[J]. IET Image Processing, 2018, 12(3): 447–452. doi: 10.1049/iet-ipr.2017.0789.
    [6] Narendra P M. A separable median filter for image noise smoothing[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1981(1): 20–29. doi: 10.1109/tpami.1981.4767047.
    [7] Tomasi C, Manduchi R. Bilateral filtering for gray and color images[C]//International Conference on Computer Vision, IEEE, 1998: 839-846. doi: 10.1109/iccv.1998.710815.
    [8] He K, Sun J, Tang X. Guided image filtering[J]. Transactions on Pattern Analysis and Machine Intelligence, IEEE, 2012, 35(6): 1397–1409. doi: 10.1109/TPAMI.2012.213.
    [9] Li Z, Zheng J, Zhu Z, et al. Weighted guided image filtering[J]. IEEE Transactions on Image processing, 2014, 24(1): 120–129. doi: 10.1109/TIP.2014.2371234.
    [10] Kou F, Chen W, Wen C, et al. Gradient domain guided image filtering[J]. IEEE Transactions on Image Processing, 2015, 24(11): 4528–4539. doi: 10.1109/TIP.2015.2468183.
    [11] Cheng J, Li Z, Gu Z, et al. Structure-preserving guided retinal image filtering and its application for optic disk analysis[J]. IEEE Transactions on Medical Imaging, 2018, 37(11): 2536–2546. doi: 10.1109/TMI.2018.2838550.
    [12] Sun Z, Han B, Li J, et al. Weighted guided image filtering with steering kernel[J]. IEEE Transactions on Image Processing, 2019, 29: 500–508.
    [13] Tan A, Liao H, Zhang B, et al. Infrared Image Enhancement Algorithm Based on Detail Enhancement Guided Image Filtering[J]. The Visual Computer, 2023, 39: 6491–6502. doi: 10.1007/s00371-022-02741-6.
    [14] Li J, Han Y, Gao Y, et al. An enhance relative total variation with BF model for edge-preserving image smoothing[J]. IEEE Transactions on Circuits and Systems for Video Technology, 2023, 33(10): 5420–5432. doi: 10.1109/TCSVT.2023.3255208.
    [15] Rudin L I, Osher S, Fatemi E. Nonlinear total variation based noise removal algorithms[J]. Physica D: nonlinear phenomena, 1992, 60(1-4): 259–268. doi: 10.1016/0167-2789(92)90242-F.
    [16] Xu L, Yan Q, Xia Y, et al. Structure extraction from texture via relative total variation[J]. ACM Transactions on Graphics (TOG), 2012, 31(6): 1–10. doi: 10.1145/2366145.2366158.
    [17] Liu W, Zhang P, Huang X, et al. Real-time image smoothing via iterative least squares[J]. ACM Transactions on Graphics (TOG), 2020, 39(3): 1–24. doi: 10.1145/3388887.
    [18] Liu W, Zhang P, Qin H, et al. Fast Global Image Smoothing via Quasi Weighted Least Squares[J]. International Journal of Computer Vision, 2024: 1-30. doi: 10.1007/s11263-024-02105-8.
    [19] He L, Xie Y, Xie S, et al. Iterative self-guided image filtering[J]. IEEE Transactions on Circuits and Systems for Video Technology, 2024, 34(8): 7537–7549. doi: 10.1109/TCSVT.2024.3374758.
    [20] Li S, Liu Y, Zeng J, et al. Image smoothing method based on global gradient sparsity and local relative gradient constraint optimization[J]. Scientific Reports, 2024, 14(1): 15152. doi: 10.1038/s41598-024-65886-5.
    [21] Sasaki T, Bandoh Y, Kitahara M. Sparse Regularization Based on Reverse Ordered Weighted L 1-Norm and Its Application to Edge-Preserving Smoothing[C]// International Conference on Acoustics, Speech and Signal Processing (ICASSP). IEEE, 2024: 9531-9535. doi: 10.1109/ICASSP48485.2024.10448119.
    [22] Li J, Han Y, Gao Y, et al. An enhance relative total variation with BF model for edge-preserving image smoothing[J]. IEEE Transactions on Circuits and Systems for Video Technology, 2023, 33(10): 5420–5432. doi: 10.1109/TCSVT.2023.3255208.
    [23] Qi H, Li F, Chen P, et al. Edge-preserving image restoration based on a weighted anisotropic diffusion model[J]. Pattern Recognition Letters, 2024, 184: 80–88. doi: 10.1016/j.patrec.2024.06.007.
    [24] Xu L, Ren J, Yan Q, et al. Deep edge-aware filters[C]//International Conference on Machine Learning. , 2015: 1669-1678.
    [25] Liu S, Pan J, Yang M H. Learning recursive filters for low-level vision via a hybrid neural network[C]// European Conference on Computer Vision, 2016: 560-576. doi: 10.1007/978-3-319-46493-0_34.
    [26] Fan Q, Yang J, Hua G, et al. A generic deep architecture for single image reflection removal and image smoothing[C]//International Conference on Computer Vision, IEEE, 2017: 3238-3247. doi: 10.1109/iccv.2017.351.
    [27] Yang Y, Tang L, Yan T, et al. Parameterized L0 Image Smoothing With Unsupervised Learning[J]. IEEE Transactions on Emerging Topics in Computational Intelligence, 2024, 8(2): 1938–1951. doi: 10.1109/TETCI.2024.3359060.
    [28] Zhang F, Tian M, Li Z, et al. Lookup table meets local laplacian filter: pyramid reconstruction network for tone mapping[J]. Advances in Neural Information Processing Systems, 2023, 36: 57558–57569. doi: 10.48550/arXiv.2310.17190.
    [29] Qi H, Tan S, Luo X. Self-supervised dual generative networks for edge-preserving image smoothing [C]//IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), 2024: 7215-7219. doi : 10.1109/ICASSP48485.2024.10448288.
    [30] Kim D, Park J, Jung J, et al. Lens distortion correction and enhancement based on local self-similarity for high-quality consumer imaging systems[J]. IEEE Transactions on Consumer Electronics, 2014, 60(1): 18–22. doi: 10.1109/tce.2014.6780920.
    [31] Tao X, Zhou C, Shen X, et al. Zero-order reverse filtering[C]//International Conference on Computer Vision, IEEE, 2017: 222-230. doi: 10.1109/ iccv.2017.33.
    [32] Jiang H, Asad M, Huang X, et al. Learning in-place residual homogeneity for single image detail enhancement[J]. Journal of Electronic Imaging, 2020, 29(4): 043016–043016. doi: 10.1117/1.jei.29.4.043016.
    [33] Zhang K, Liang J, Van Gool L, et al. Designing a practical degradation model for deep blind image super-resolution[C]//International Conference on Computer Vision, IEEE, 2021: 4791-4800. doi: 10.1109/iccv48922.2021.00475.
    [34] Arbelaez P, Maire M, Fowlkes C, et al. Contour detection and hierarchical image segmentation[J]. IEEE transactions on pattern analysis and machine intelligence, 2010, 33(5): 898–916. doi: 10.1109/ TPAMI.2010.161. doi: 10.1109/TPAMI.2010.161.
    [35] Dong C, Loy C C, He K, et al. Learning a deep convolutional network for image super-resolution[C]//European Conference on Computer Vision, 2014: 184-199. doi: 10.1007/978-3-319-10593-2_13.
    [36] Zhang Q, Jiang H, Nie Y, et al. Pyramid Texture Filtering[J]. ACM Transactions on Graphics (TOG), 2023, 42(4): 1–11. doi: 10.1145/3592120.
    [37] Liu W, Zhang P, Chen X, et al. Embedding bilateral filter in least squares for efficient edge-preserving image smoothing[J]. IEEE Transactions on Circuits and Systems for Video Technology, 2018, 30(1): 23–35. doi: 10.1109/TCSVT.2018.2890202.
    [38] Liu W, Zhang P, Lei Y, et al. A generalized framework for edge-preserving and structure-preserving image smoothing[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2021, 44(10): 6631–6648. doi: 10.1109/TPAMI.2021.3097891.
    [39] Dmitry U, Vedaldi A, Victor L. Deep image prior[J]. International Journal of Computer Vision, 2020, 128(7): 1867-1888. [37] doi: 10.1007/s11263-020-01303-4.
    [40] Li M, Fu Y, Li X, et al. Deep flexible structure preserving image smoothing[C]//ACM International Conference on Multimedia, 2022: 1875-1883. doi: 10.1145/3503161.3547857.
    [41] Wang J, Wang Y, Feng Y, et al. Contrastive Semantic‐Guided Image Smoothing Network [C]//Computer Graphics Forum. 2022, 41(7): 335–346. doi: 10.1111/ cgf.14681.
    [42] He X, Quan Y, Xu Y, et al. Image Smoothing via Multiscale Global Perception[J]. IEEE Signal Processing Letters, 2024, 31: 411–415. doi: 10.1109/ LSP.2024.3354549. doi: 10.1109/LSP.2024.3354549.
  • 加载中
图(13) / 表(3)
计量
  • 文章访问数:  33
  • HTML全文浏览量:  17
  • PDF下载量:  1
  • 被引次数: 0
出版历程
  • 收稿日期:  2025-05-26
  • 修回日期:  2025-11-03
  • 录用日期:  2025-11-03
  • 网络出版日期:  2025-11-12

目录

    /

    返回文章
    返回