高级搜索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

开普勒定律启发的单幅图像细节增强算法

江鹤 孙蟒 郑州 吴沛霖 程德强 周晨

江鹤, 孙蟒, 郑州, 吴沛霖, 程德强, 周晨. 开普勒定律启发的单幅图像细节增强算法[J]. 电子与信息学报. doi: 10.11999/JEIT250455
引用本文: 江鹤, 孙蟒, 郑州, 吴沛霖, 程德强, 周晨. 开普勒定律启发的单幅图像细节增强算法[J]. 电子与信息学报. doi: 10.11999/JEIT250455
JIANG He, SUN Mang, ZHENG Zhou, WU Peilin, CHENG Deqiang, ZHOU Chen. Kepler’s Laws Inspired Single Image Detail Enhancement Algorithm[J]. Journal of Electronics & Information Technology. doi: 10.11999/JEIT250455
Citation: JIANG He, SUN Mang, ZHENG Zhou, WU Peilin, CHENG Deqiang, ZHOU Chen. Kepler’s Laws Inspired Single Image Detail Enhancement Algorithm[J]. Journal of Electronics & Information Technology. doi: 10.11999/JEIT250455

开普勒定律启发的单幅图像细节增强算法

doi: 10.11999/JEIT250455 cstr: 32379.14.JEIT250455
基金项目: 国家自然科学基金(52304182, 52204177),国家重点研发计划(2023YFC2907600, 2021YFC2902701, 2021YFC2902702)
详细信息
    作者简介:

    江鹤:男,讲师,研究方向为图像处理

    孙蟒:男,硕士生,研究方向为图像细节增强

    郑州:男,硕士生,研究方向为图像细节增强

    吴沛霖:男,研究方向为图像细节增强

    程德强:男,教授,研究方向为图像处理

    周晨:女,讲师,研究方向为图像识别

    通讯作者:

    周晨 zc111@cumt.edu.cn

  • 中图分类号: TN713; TP391

Kepler’s Laws Inspired Single Image Detail Enhancement Algorithm

Funds: The National Natural Science Foundation of China (52304182, 52204177), The National Key Research and Development Program of China (2023YFC2907600, 2021YFC2902701, 2021YFC2902702)
  • 摘要: 近年来,基于残差学习的单幅图像细节增强算法备受关注,其通过更新残差层来拟合图像细节层,并与原图像线性叠加实现图像细节增强。然而,此更新过程使用的方法是贪心算法,极易使系统陷入局部最优解,进而限制了系统性能。鉴于此,受行星运动规律的启发,该研究将残差更新类比为行星空间位置的动态调整,借鉴开普勒定律,通过计算确定行星的全局最优位置,进而实现残差层的精准更新。具体而言,将输入图像分块,对每个原始图像块,将其候选图像块视为“行星”,最佳匹配块视为“恒星”。通过计算每个“行星”与原始图像块之间的差异、“行星”的速度和“恒星”的引力,更新“行星”和“恒星”的位置,直至“恒星”的位置达到收敛状态,确定全局最佳匹配块的位置。实验结果显示,该研究提出的算法在视觉效果及量化评估方面均优于当前方法。值得一提的是,在BSDS200数据集4倍增强因子的结果中,该研究提出的方法比当前流行方法QWLS的量化指标PSNR和SSIM分别高出1.51 dB和0.041 3,彰显了该研究算法的优越性。
  • 图  1  研究动机原理图

    图  2  基于开普勒优化的单幅细节增强算法框架

    图  3  开普勒优化算法原理图

    图  4  RealSRSet中pattern图像的4倍细节放大对比示意图

    图  5  BSDS200中28075图像的4倍细节放大对比示意图

    图  6  BSDS200中87065图像的4倍细节放大对比示意图

    图  7  强度曲线对比图

    图  8  RealSRSet中ppt3高斯噪声图像4倍细节放大对比图

    图  9  RealSRSet中dog椒盐噪声图像4倍细节放大对比图

    图  11  不同噪声类型和强度下图像细节增强的定量指标曲线图

    图  10  RealSRSet中butterfly2泊松噪声4倍细节放大对比图

    图  12  引力初值与引力衰减速率对PSNR影响的对比图

    图  13  损失函数参数$ \zeta $和$ \xi $的消融实验图

    表  1  增强因子为2和4时在基准数据集下的指标对比

    模型 增强因子 RealSRSet[32] BSDS200[33] T91[34]
    PSNR(dB) SSIM PSNR(dB) SSIM PSNR(dB) SSIM
    WLS(TOG 2008)[15] X2 20.16 0.8235 17.74 0.7439 18.63 0.7693
    GIF(TPAMI 2012)[8] 24.45 0.8908 23.89 0.8344 23.82 0.8444
    WGIF(TIP 2015)[9] 25.66 0.8867 27.91 0.8816 24.85 0.8517
    GGIF(TIP 2015)[10] 27.35 0.9256 27.41 0.8865 26.95 0.8955
    ZF(ICCV 2017)[30] 20.65 0.7731 22.56 0.7966 24.09 0.9237
    BFLS(TCSVT 2018)[36] 22.51 0.8318 23.06 0.7965 21.63 0.7659
    ILS(TOG 2020)[17] 26.16 0.8761 25.09 0.8313 23.48 0.8093
    DIP(IJCV 2020)[38] 23.00 0.7970 23.75 0.7657 25.87 0.8232
    IPRH(JEI 2020)[31] 26.30 0.9147 24.97 0.8629 28.48 0.9102
    TH(TPAMI 2021)[37] 20.70 0.7872 21.32 0.7620 21.43 0.7616
    DeepFSPIS(ACM MM 2022)[39] 26.13 0.8640 27.05 0.8640 25.67 0.8260
    CSGIS(CGF 2022)[40] 24.50 0.8340 25.32 0.8355 25.18 0.8216
    PTF(TOG 2023)[35] 18.43 0.7365 19.12 0.7116 18.76 0.6939
    MGPNet(SPL 2024)[41] 20.56 0.6953 23.38 0.8430 21.18 0.7489
    QWLS(IJCV 2024)[18] 24.54 0.8894 26.83 0.9099 27.50 0.9153
    KLDE(本研究) 31.20 0.9718 28.59 0.9344 32.32 0.9626
    WLS(TOG 2008)[15] X4 - - - - - -
    GIF(TPAMI 2012)[8] 19.53 0.7638 18.71 0.6637 18.73 0.6862
    WGIF(TIP 2015)[9] 20.87 0.7781 22.54 0.7517 19.77 0.7081
    GGIF(TIP 2015)[10] 22.09 0.8294 21.90 0.7517 21.53 0.7699
    ZF(ICCV 2017)[30] 16.60 0.6038 18.07 0.6218 19.36 0.6081
    BFLS(TCSVT 2018)[36] 18.70 0.6982 18.07 0.6174 16.95 0.5898
    ILS(TOG 2020)[17] 21.10 0.7491 19.81 0.6636 18.49 0.6432
    DIP(IJCV 2020)[38] 19.69 0.6988 21.16 0.6860 22.71 0.7285
    IPRH(JEI 2020)[31] 21.47 0.8039 20.14 0.7105 23.30 0.7782
    TH(TPAMI 2021)[37] 16.72 0.6354 16.77 0.5786 16.91 0.5822
    DeepFSPIS(ACM MM 2022)[39] 20.88 0.7220 21.59 0.7030 20.47 0.6510
    CSGIS(CGF 2022)[40] 19.16 0.6651 19.82 0.6523 19.77 0.6344
    PTF(TOG 2023)[35] 15.09 0.5777 15.17 0.5244 14.89 0.5080
    MGPNet(SPL 2024)[41] 16.86 0.5422 19.47 0.7070 18.02 0.6018
    QWLS(IJCV 2024)[18] 20.27 0.7721 21.83 0.7906 22.88 0.7950
    KLDE(本研究) 25.87 0.9181 23.34 0.8319 26.84 0.8921
    注:黑色加粗字体为每列最优值,加下划线字体为每列次优值
    下载: 导出CSV

    表  2  MOS比较

    数据集增强因子排名前4的算法
    RealSRSet[32]X2KLDE>QWLS[18]>IPRH[31]>ZF[30]
    BSDS200[33]QWLS[18]>KLDE>IPRH[31]>PTF[35]
    T91[34]KLDE>QWLS[18]>ZF[30]>IPRH[31]
    RealSRSet[32]X4KLDE>QWLS[18]>IPRH[31]]>ZF[30]
    BSDS200[33]KLDE>QWLS[18]]>IPRH[31]]>PTF[35]
    T91[34]KLDE>QWLS[18]>ZF[27]>IPRH[31]
    注:黑色加粗字体为本研究算法
    下载: 导出CSV

    表  3  数据集RealSRSet上增强因子为4时运行时间比较

    模型平均运行时间(s)PSNR(dB)
    GIF(TPAMI 2012)[8]0.0419.53
    WGIF(TIP 2015)[9]0.0820.87
    GGIF(TIP 2015)[10]0.0822.09
    ZF(ICCV 2017)[30]0.0416.60
    BFLS(TCSVT 2018)[36]0.5218.70
    ILS(TOG 2020)[17]0.4421.10
    DIP(IJCV 2020)[38]4.0119.69
    IPRH(JEI 2020)[31]0.0321.47
    TH(TPAMI 2021)[37]0.3916.72
    DeepFSPIS(ACM MM 2022)[39]0.5220.88
    CSGIS(CGF 2022)[40]0.1619.16
    PTF(TOG 2023)[35]7.6415.09
    MGPNet(SPL 2024)[41]0.2116.86
    QWLS(IJCV 2024)[18]0.3920.27
    KLDE(本研究)13.2925.87
    注:黑色加粗字体为本研究算法
    下载: 导出CSV
  • [1] 徐少平, 熊明海, 周常飞. 利用近清图像空间搜索的深度图像先验降噪模型[J]. 电子与信息学报, 2024, 46(11): 4229–4235. doi: 10.11999/JEIT240114.

    XU Shaoping, XIONG Minghai, and ZHOU Changfei. Deep image prior denoising model using relatively clean image space search[J]. Journal of Electronics & Information Technology, 2024, 46(11): 4229–4235. doi: 10.11999/JEIT240114.
    [2] 程德强, 袁航, 钱建生, 等. 基于深层特征差异性网络的图像超分辨率算法[J]. 电子与信息学报, 2024, 46(3): 1033–1042. doi: 10.11999/JEIT230179.

    CHENG Deqiang, YUAN Hang, QIAN Jiansheng, et al. Image super-resolution algorithms based on deep feature differentiation network[J]. Journal of Electronics & Information Technology, 2024, 46(3): 1033–1042. doi: 10.11999/JEIT230179.
    [3] LI Feng, BAI Huihui, and ZHAO Yao. Detail-preserving image super-resolution via recursively dilated residual network[J]. Neurocomputing, 2019, 358: 285–293. doi: 10.1016/j.neucom.2019.05.042.
    [4] ZHAO Mo, CAO Gang, HUANG Xianglin, et al. Hybrid transformer-CNN for real image denoising[J]. IEEE Signal Processing Letters, 2022, 29: 1252–1256. doi: 10.1109/LSP.2022.3176486.
    [5] CAO Gang, TIAN Huawei, YU Lifang, et al. Acceleration of histogram-based contrast enhancement via selective downsampling[J]. IET Image Processing, 2018, 12(3): 447–452. doi: 10.1049/iet-ipr.2017.0789.
    [6] NARENDRA P M. A separable median filter for image noise smoothing[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1981, PAMI-3(1): 20–29. doi: 10.1109/tpami.1981.4767047.
    [7] TOMASI C and MANDUCHI R. Bilateral filtering for gray and color images[C]. Sixth International Conference on Computer Vision (IEEE Cat. No. 98CH36271), Bombay, India, 1998: 839–846. doi: 10.1109/iccv.1998.710815.
    [8] HE Kaiming, SUN Jian, and TANG Xiaoou. Guided image filtering[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2013, 35(6): 1397–1409. doi: 10.1109/TPAMI.2012.213.
    [9] LI Zhengguo, ZHENG Jinghong, ZHU Zijian, et al. Weighted guided image filtering[J]. IEEE Transactions on Image Processing, 2015, 24(1): 120–129. doi: 10.1109/TIP.2014.2371234.
    [10] KOU Fei, CHEN Weihai, WEN Changyun, et al. Gradient domain guided image filtering[J]. IEEE Transactions on Image Processing, 2015, 24(11): 4528–4539. doi: 10.1109/TIP.2015.2468183.
    [11] CHENG Jun, LI Zhengguo, GU Zaiwang, et al. Structure-preserving guided retinal image filtering and its application for optic disk analysis[J]. IEEE Transactions on Medical Imaging, 2018, 37(11): 2536–2546. doi: 10.1109/TMI.2018.2838550.
    [12] SUN Zhonggui, HAN Bo, LI Jie, et al. Weighted guided image filtering with steering kernel[J]. IEEE Transactions on Image Processing, 2020, 29: 500–508. doi: 10.1109/TIP.2019.2928631.
    [13] TAN Ailing, LIAO Hongping, ZHANG Bozhi, et al. Infrared image enhancement algorithm based on detail enhancement guided image filtering[J]. The Visual Computer, 2023, 39(12): 6491–6502. doi: 10.1007/s00371-022-02741-6.
    [14] LI Jun, HAN Yuxuan, GAO Yin, et al. An enhance relative total variation with BF model for edge-preserving image smoothing[J]. IEEE Transactions on Circuits and Systems for Video Technology, 2023, 33(10): 5420–5432. doi: 10.1109/TCSVT.2023.3255208.
    [15] RUDIN L I, OSHER S, and FATEMI E. Nonlinear total variation based noise removal algorithms[J]. Physica D: Nonlinear Phenomena, 1992, 60(1/4): 259–268. doi: 10.1016/0167-2789(92)90242-F.
    [16] XU Li, YAN Qiong, XIA Yang, et al. Structure extraction from texture via relative total variation[J]. ACM Transactions on Graphics (TOG), 2012, 31(6): 139. doi: 10.1145/2366145.2366158.
    [17] LIU Wei, ZHANG Pingping, HUANG Xiaolin, et al. Real-time image smoothing via iterative least squares[J]. ACM Transactions on Graphics (TOG), 2020, 39(3): 28. doi: 10.1145/3388887.
    [18] LIU Wei, ZHANG Pingping, QIN Hongxing, et al. Fast global image smoothing via quasi weighted least squares[J]. International Journal of Computer Vision, 2024, 132(12): 6039–6068. doi: 10.1007/s11263-024-02105-8.
    [19] HE Lei, XIE Yongfang, XIE Shiwen, et al. Iterative self-guided image filtering[J]. IEEE Transactions on Circuits and Systems for Video Technology, 2024, 34(8): 7537–7549. doi: 10.1109/TCSVT.2024.3374758.
    [20] LI Siyuan, LIU Yuan, ZENG Jiafu, et al. Image smoothing method based on global gradient sparsity and local relative gradient constraint optimization[J]. Scientific Reports, 2024, 14(1): 15152. doi: 10.1038/s41598-024-65886-5.
    [21] SASAKI T, BANDOH Y, and KITAHARA M. Sparse regularization based on reverse ordered weighted L1-norm and its application to edge-preserving smoothing[C]. ICASSP 2024 - 2024 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), Seoul, Korea, 2024: 9531–9535. doi: 10.1109/ICASSP48485.2024.10448119.
    [22] QI Huiqing, LI Fang, CHEN Peng, et al. Edge-preserving image restoration based on a weighted anisotropic diffusion model[J]. Pattern Recognition Letters, 2024, 184: 80–88. doi: 10.1016/j.patrec.2024.06.007.
    [23] XU Li, REN J S J, YAN Qiong, et al. Deep edge-aware filters[C]. The 32nd International Conference on International Conference on Machine Learning - Volume 37, Lille, France, 2015: 1669–1678.
    [24] LIU Sifei, PAN Jinshan, and YANG M H. Learning recursive filters for low-level vision via a hybrid neural network[C]. 14th European Conference on Computer Vision – ECCV 2016, Amsterdam, The Netherlands, 2016: 560–576. doi: 10.1007/978-3-319-46493-0_34.
    [25] FAN Qingnan, YANG Jiaolong, HUA Gang, et al. A generic deep architecture for single image reflection removal and image smoothing[C]. 2017 IEEE International Conference on Computer Vision (ICCV), Venice, Italy, 2017: 3258–3267. doi: 10.1109/iccv.2017.351.
    [26] YANG Yang, TANG Ling, YAN Tao, et al. Parameterized L0 image smoothing with unsupervised learning[J]. IEEE Transactions on Emerging Topics in Computational Intelligence, 2024, 8(2): 1938–1951. doi: 10.1109/TETCI.2024.3359060.
    [27] ZHANG Feng, TIAN Ming, LI Zhiqiang, et al. Lookup table meets local laplacian filter: Pyramid reconstruction network for tone mapping[C]. Proceedings of the 37th International Conference on Neural Information Processing Systems, New Orleans, USA, 2023: 2510.
    [28] QI Huiqing, TAN Shengli, and LUO Xiaoliu. Self-supervised dual generative networks for edge-preserving image smoothing[C]. ICASSP 2024 - 2024 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), Seoul, Korea, 2024: 7215–7219. doi: 10.1109/ICASSP48485.2024.10448288.
    [29] KIM D, PARK J, JUNG J, et al. Lens distortion correction and enhancement based on local self-similarity for high-quality consumer imaging systems[J]. IEEE Transactions on Consumer Electronics, 2014, 60(1): 18–22. doi: 10.1109/tce.2014.6780920.
    [30] TAO Xin, ZHOU Chao, SHEN Xiaoyong, et al. Zero-order reverse filtering[C]. 2017 IEEE International Conference on Computer Vision (ICCV), Venice, Italy, 2017: 222–230. doi: 10.1109/iccv.2017.33.
    [31] JIANG He, ASAD M, HUANG Xiaolin, et al. Learning in-place residual homogeneity for single image detail enhancement[J]. Journal of Electronic Imaging, 2020, 29(4): 043016. doi: 10.1117/1.jei.29.4.043016.
    [32] ZHANG Kai, LIANG Jingyun, VAN GOOL L, et al. Designing a practical degradation model for deep blind image super-resolution[C]. 2021 IEEE/CVF International Conference on Computer Vision (ICCV), Montreal, Canada, 2021: 4771–4780. doi: 10.1109/iccv48922.2021.00475.
    [33] ARBELÁEZ P, MAIRE M, FOWLKES C, et al. Contour detection and hierarchical image segmentation[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2011, 33(5): 898–916. doi: 10.1109/TPAMI.2010.161.
    [34] DONG Chao, LOY C C, HE Kaiming, et al. Learning a deep convolutional network for image super-resolution[C]. 13th European Conference on Computer Vision -- ECCV 2014, Zurich, Switzerland, 2014: 184–199. doi: 10.1007/978-3-319-10593-2_13.
    [35] ZHANG Qing, JIANG Hao, NIE Yongwei, et al. Pyramid texture filtering[J]. ACM Transactions on Graphics (TOG), 2023, 42(4): 110. doi: 10.1145/3592120.
    [36] LIU Wei, ZHANG Pingping, CHEN Xiaogang, et al. Embedding bilateral filter in least squares for efficient edge-preserving image smoothing[J]. IEEE Transactions on Circuits and Systems for Video Technology, 2020, 30(1): 23–35. doi: 10.1109/TCSVT.2018.2890202.
    [37] LIU Wei, ZHANG Pingping, LEI Yinjie, et al. A generalized framework for edge-preserving and structure-preserving image smoothing[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2022, 44(10): 6631–6648. doi: 10.1109/TPAMI.2021.3097891.
    [38] DMITRY U, VEDALDI A, and VICTOR L. Deep image prior[J]. International Journal of Computer Vision, 2020, 128(7): 1867–1888. doi: 10.1007/s11263-020-01303-4.
    [39] LI Mingjia, FU Yuanbin, LI Xinhui, et al. Deep flexible structure preserving image smoothing[C]. The 30th ACM International Conference on Multimedia, Lisboa, Portugal, 2022: 1875–1883. doi: 10.1145/3503161.3547857.
    [40] WANG Jie, WANG Yongzhen, FENG Yidan, et al. Contrastive semantic-guided image smoothing network[J]. Computer Graphics Forum, 2022, 41(7): 335–346. doi: 10.1111/cgf.14681.
    [41] HE Xuyi, QUAN Yuhui, XU Yong, et al. Image smoothing via multiscale global perception[J]. IEEE Signal Processing Letters, 2024, 31: 411–415. doi: 10.1109/LSP.2024.3354549.
  • 加载中
图(13) / 表(3)
计量
  • 文章访问数:  83
  • HTML全文浏览量:  42
  • PDF下载量:  17
  • 被引次数: 0
出版历程
  • 收稿日期:  2025-05-26
  • 修回日期:  2025-11-03
  • 录用日期:  2025-11-03
  • 网络出版日期:  2025-11-12

目录

    /

    返回文章
    返回