高级搜索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

粒子群约束下的多胞空间滤波及其在锂电池SOC估计中的应用

霍雷霆 王子赟 王艳

霍雷霆, 王子赟, 王艳. 粒子群约束下的多胞空间滤波及其在锂电池SOC估计中的应用[J]. 电子与信息学报. doi: 10.11999/JEIT250437
引用本文: 霍雷霆, 王子赟, 王艳. 粒子群约束下的多胞空间滤波及其在锂电池SOC估计中的应用[J]. 电子与信息学报. doi: 10.11999/JEIT250437
HUO Leiting, WANG Ziyun, WANG Yan. A Particle-Swarm-Confinement-based Zonotopic Space Filtering Algorithm and Its Application to State of Charge Estimation for Lithium-Ion Batteries[J]. Journal of Electronics & Information Technology. doi: 10.11999/JEIT250437
Citation: HUO Leiting, WANG Ziyun, WANG Yan. A Particle-Swarm-Confinement-based Zonotopic Space Filtering Algorithm and Its Application to State of Charge Estimation for Lithium-Ion Batteries[J]. Journal of Electronics & Information Technology. doi: 10.11999/JEIT250437

粒子群约束下的多胞空间滤波及其在锂电池SOC估计中的应用

doi: 10.11999/JEIT250437 cstr: 32379.14.JEIT250437
基金项目: 国家自然科学基金(62473174)和江苏省基础研究计划(BK20221533)
详细信息
    作者简介:

    霍雷霆:男,硕士生,研究方向为锂电池运行状态估计与先进滤波算法

    王子赟:男,副教授,研究方向为滤波器设计与锂电池SOC估计

    王艳:女,教授,研究方向为新能源绿色制造与工业互联技术

    通讯作者:

    王子赟 wangzy0601@163.com

  • 中图分类号: TN713 TP273

A Particle-Swarm-Confinement-based Zonotopic Space Filtering Algorithm and Its Application to State of Charge Estimation for Lithium-Ion Batteries

Funds: The National Natural Science Foundation of China (62473174), The Natural Science Foundation of Jiangsu Province (BK20221533)
  • 摘要: 荷电状态是衡量锂离子电池剩余电量的关键指标,其准确估计对电池管理系统至关重要。该文提出了一种粒子群约束下的多胞空间滤波算法,用于解决系统存在未知但有界噪声时的状态估计问题。该算法能够准确检测并重新映射异常粒子,从而确保搜索过程的稳定性。通过采用法向量缩放的方法调整超平面位置,将粒子群限制在多胞搜索空间区域内,以优化状态估计的效率。该粒子群优化算法具备良好的适应性,能够有效减少估计冗余并增强鲁棒性,尤其适用于高维系统。将该算法应用于锂离子电池荷电状态分析的实验结果表明,该算法能够对锂离子电池荷电状态变化情况进行有效估计。
  • 图  1  PSC-ZSF算法优化和更新多胞搜索空间的过程

    图  2  锂离子电池SOC分析实验平台

    图  3  各算法状态可行集体积对比

    图  4  各算法SOC估计边界对比

    图  5  各算法极化电压估计边界对比

    表  1  开路电压与荷电状态的对应关系

    SOC
    (%)
    0 10 20 30 40 50 60 70 80 90 100
    UOC
    (V)
    2.782 3.629 3.711 3.758 3.792 3.826 3.873 3.938 4.012 4.088 4.193
    下载: 导出CSV

    表  2  等效电路的各参数值

    R0 (Ω) Rp (Ω) I (A) Cp (F) $ \Delta t $ (s) $ {{{Q}}_{{\text{re}}}} $ (Ah) $ \eta $
    0.0421 0.0311 1 2369.8 5 1200 0.9
    下载: 导出CSV
  • [1] 张照娓, 郭天滋, 高明裕, 等. 电动汽车锂离子电池荷电状态估算方法研究综述[J]. 电子与信息学报, 2021, 43(7): 1803–1815. doi: 10.11999/JEIT200487.

    ZHANG Zhaowei, GUO Tianzi, GAO Mingyu, et al. Review of SoC estimation methods for electric vehicle Li-ion batteries[J]. Journal of Electronics & Information Technology, 2021, 43(7): 1803–1815. doi: 10.11999/JEIT200487.
    [2] 王翔, 张巍, 田会臻, 等. 新能源汽车锂离子电池动静态荷电状态估计方法[J/OL]. 电力电子技术. https://doi.org/10.20222/j.cnki.cn61-1124/tm.20250509.022, 2025.

    WANG Xiang, ZHANG Wei, TIAN Huizhen, et al. Methods for dynamic and static state-of-charge estimation of lithium-ion batteries in new energy vehicles[J/OL]. Power Electronics Technology. https://doi.org/10.20222/j.cnki.cn61-1124/tm.20250509.022, 2025.
    [3] LI Haibin, ZHAO Hongwei, LIU Dinghong, et al. Electro-thermal coupling modeling and heat generation decoupling analysis of semi-solid-state lithium-ion battery[J]. Electrochimica Acta, 2025, 512: 145455. doi: 10.1016/j.electacta.2024.145455.
    [4] 王振华, 张文瀚, 崔骞, 等. 集员卡尔曼滤波器在电机故障诊断中的应用[J]. 控制理论与应用, 2023, 40(10): 1721–1729. doi: 10.7641/CTA.2023.20649.

    WANG Zhenhua, ZHANG Wenhan, CUI Qian, et al. Application of set-membership Kalman filter in motor fault diagnosis[J]. Control Theory & Applications, 2023, 40(10): 1721–1729. doi: 10.7641/CTA.2023.20649.
    [5] SHI Huiyuan, LI Ping, CAO Jiangtao, et al. Robust fuzzy predictive control for discrete-time systems with interval time-varying delays and unknown disturbances[J]. IEEE Transactions on Fuzzy Systems, 2020, 28(7): 1504–1516. doi: 10.1109/TFUZZ.2019.2959539.
    [6] ROSTAMI M and LOTFIFARD S. Distributed dynamic state estimation of power systems[J]. IEEE Transactions on Industrial Informatics, 2018, 14(8): 3395–3404. doi: 10.1109/TII.2017.2777495.
    [7] GUO Kai, ZHANG Zekun, ZHENG Dongdong, et al. Set-membership adaptive robot control with deterministically bounded learning gains[J]. IEEE Transactions on Industrial Informatics, 2023, 19(8): 8564–8574. doi: 10.1109/TII.2022.3220892.
    [8] SONG Wenchao, HE Jingbo, LIN Junjie, et al. Bias analysis of PMU-based state estimation and its linear Bayesian improvement[J]. IEEE Transactions on Industrial Informatics, 2024, 20(2): 1607–1617. doi: 10.1109/TII.2023.3280328.
    [9] WANG Ziyun, LI Siyu, WANG Yan, et al. Fault isolability evaluation based on orthographic projection for linear system with bounded noise[J]. IEEE Transactions on Circuits and Systems II: Express Briefs, 2024, 71(7): 3448–3452. doi: 10.1109/TCSII.2024.3362712.
    [10] 王子赟, 占雅聪, 陈宇乾, 等. 基于多胞空间可行集滤波的噪声不确定切换系统故障诊断[J]. 控制与决策, 2023, 38(7): 1909–1917. doi: 10.13195/j.kzyjc.2021.1938.

    WANG Ziyun, ZHAN Yacong, CHEN Yuqian, et al. Polyhedron spatial feasible set filtering based fault diagnosis for switched system with unknown noise term[J]. Control and Decision, 2023, 38(7): 1909–1917. doi: 10.13195/j.kzyjc.2021.1938.
    [11] XING Yashan, NA Jing, and COSTA-CASTELLÓ R. Real-time adaptive parameter estimation for a polymer electrolyte membrane fuel cell[J]. IEEE Transactions on Industrial Informatics, 2019, 15(11): 6048–6057. doi: 10.1109/TII.2019.2915569.
    [12] ZHAN Yacong, WANG Ziyun, WANG Yan, et al. Zonotope and Gaussian Kalman filters based state estimation algorithm for linear system with dual noise term[J]. IET Control Theory & Applications, 2023, 17(5): 516–526. doi: 10.1049/cth2.12388.
    [13] XIONG Rui, CAO Jiayi, YU Quanqing, et al. Critical review on the battery state of charge estimation methods for electric vehicles[J]. IEEE Access, 2018, 6: 1832–1843. doi: 10.1109/ACCESS.2017.2780258.
    [14] QU Danyang, ZHAO Yiwen, ZHAO Xingang, et al. Recursive parallelotope set-membership estimation algorithm in nonlinear system[C]. 2022 28th International Conference on Mechatronics and Machine Vision in Practice (M2VIP), Nanjing, China, 2022: 1–6. doi: 10.1109/M2VIP55626.2022.10041063.
    [15] ZHOU M, HU Q, GU Z, et al. Observer-based robust control for uncertain time-delay systems with input saturation via zonotopic approach[J]. IEEE Access, 2020, 8: 65212–65223. doi: 10.1109/ACCESS.2020.2982519.
    [16] CASINI M, GARULLI A, and VICINO A. Set membership state estimation for discrete-time linear systems with binary sensor measurements[J]. Automatica, 2024, 159: 111396. doi: 10.1016/j.automatica.2023.111396.
    [17] TANG Wentao, WANG Zhenhua, and SHEN Yi. Fault detection and isolation for discrete-time descriptor systems based on H_/L∞ observer and zonotopic residual evaluation[J]. International Journal of Control, 2020, 93(8): 1867–1878. doi: 10.1080/00207179.2018.1535716.
    [18] ZHANG Yuchen, CHEN Bo, and YU Li. Distributed zonotopic estimation for interconnected systems: A fusing overlapping states strategy[J]. Automatica, 2023, 155: 111144. doi: 10.1016/j.automatica.2023.111144.
    [19] SHAMI T M, EL-SALEH A A, ALSWAITTI M, et al. Particle swarm optimization: A comprehensive survey[J]. IEEE Access, 2022, 10: 10031–10061. doi: 10.1109/ACCESS.2022.3142859.
    [20] 李冀, 周战洪, 贺红林, 等. 基于围猎改进哈里斯鹰优化的粒子滤波方法[J]. 电子与信息学报, 2023, 45(6): 2284–2292. doi: 10.11999/JEIT220532.

    LI Ji, ZHOU Zhanhong, HE Honglin, et al. A particle filter method based on Harris hawks optimization improved by encircling strategy[J]. Journal of Electronics & Information Technology, 2023, 45(6): 2284–2292. doi: 10.11999/JEIT220532.
    [21] 王子赟, 季钢, 沈谦逸, 等. 基于粒子群的正交超平行空间滤波及其在SOC估计中的应用[J]. 控制与决策, 2025, 40(2): 599–607. doi: 10.13195/j.kzyjc.2024.0191.

    WANG Ziyun, JI Gang, SHEN Qianyi, et al. Particle swarm optimization based orthometric hyperparallel space filtering and its application in SOC estimation[J]. Control and Decision, 2025, 40(2): 599–607. doi: 10.13195/j.kzyjc.2024.0191.
    [22] WANG Zhenhua, ZHANG Yilian, SHEN Mouquan, et al. Ellipsoidal set-membership filtering for discrete-time linear time-varying systems[J]. IEEE Transactions on Automatic Control, 2023, 68(9): 5767–5774. doi: 10.1109/TAC.2022.3228205.
    [23] IFQIR S, VICENÇ P, DALIL I, et al. Zonotopic set-membership state estimation for switched systems[J]. Journal of the Franklin Institute, 2022, 359(16): 9241–9270. doi: 10.1016/j.jfranklin.2022.08.044.
    [24] SOLDI G, MEYER F, BRACA P, et al. Self-tuning algorithms for multisensor-multitarget tracking using belief propagation[J]. IEEE Transactions on Signal Processing, 2019, 67(15): 3922–3937. doi: 10.1109/TSP.2019.2916764.
  • 加载中
图(5) / 表(2)
计量
  • 文章访问数:  61
  • HTML全文浏览量:  55
  • PDF下载量:  6
  • 被引次数: 0
出版历程
  • 收稿日期:  2025-05-20
  • 修回日期:  2025-08-20
  • 网络出版日期:  2025-08-27

目录

    /

    返回文章
    返回