高级搜索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

时序复合扩散网络驱动的电网数据恢复方法

严彦东 李晨熙 李士杰 杨漾 葛宇昊 黄雨

严彦东, 李晨熙, 李士杰, 杨漾, 葛宇昊, 黄雨. 时序复合扩散网络驱动的电网数据恢复方法[J]. 电子与信息学报. doi: 10.11999/JEIT250435
引用本文: 严彦东, 李晨熙, 李士杰, 杨漾, 葛宇昊, 黄雨. 时序复合扩散网络驱动的电网数据恢复方法[J]. 电子与信息学报. doi: 10.11999/JEIT250435
YAN Yandong, LI Chenxi, LI Shijie, YANG Yang, GE Yuhao, HUANG Yu. Power Grid Data Recovery Method Driven by Temporal Composite Diffusion Networks[J]. Journal of Electronics & Information Technology. doi: 10.11999/JEIT250435
Citation: YAN Yandong, LI Chenxi, LI Shijie, YANG Yang, GE Yuhao, HUANG Yu. Power Grid Data Recovery Method Driven by Temporal Composite Diffusion Networks[J]. Journal of Electronics & Information Technology. doi: 10.11999/JEIT250435

时序复合扩散网络驱动的电网数据恢复方法

doi: 10.11999/JEIT250435 cstr: 32379.14.JEIT250435
基金项目: 中国南方电网有限责任公司科技项目(ZBKJXM20240174)
详细信息
    作者简介:

    严彦东:男,博士研究生在读,研究方向为表型数据、时序数据、多模态数据的生成与增强

    李晨熙:男,本科在读,研究方向为扩散式生成模型、数据增强、数据恢复

    李士杰:男,高级工程师,研究方向为高电压与绝缘技术

    杨漾:女,高级工程师,研究方向为软件工程与体系结构

    葛宇昊:男,中级工程师,研究方向为数据分析与人工智能

    黄雨:男,研究员,研究方向为大数据管理、多模态数据分析、电网大数据、医学信息交叉

    通讯作者:

    黄雨 hy@pku.edu.cn

  • 中图分类号: TN911.7; TP39

Power Grid Data Recovery Method Driven by Temporal Composite Diffusion Networks

Funds: China Southern Power Grid (csg) Science and Technology Item (ZBKJXM20240174)
  • 摘要: 电网作为连接电力传输与终端用户的重要枢纽,其数据的管理与分析在保障电网稳定性和提升供电质量方面扮演着举足轻重的角色。电网相关数据涵盖范围广泛,内容复杂,包括用户用电模式、气象条件、设备信息及营销数据等多个层面。这些多源异构数据在采集和传输过程中,常受到噪声信号等冗余信息的影响,容易出现数据缺失现象。数据不完整不仅使运行状态监测变得更加困难,也严重制约了故障诊断、健康评估及运维决策等关键工作的效率与准确性。为了提高电网数据的效用性,更好地利用其来保障电网稳定运行,该文提出一种基于扩散模型的电网数据恢复方法,通过独特设计的双层扩散流,能将时序序列嵌入为条件信息,大幅优化了扩散网络在电网场景下的表现。模型将输入的高斯噪声映射到缺失数据的目标分布空间,从而按照其原始分布规律恢复出缺失数据,增强了数据的可用性和价值。实验表明,与以往的方法相比,该方法能够达到领先的恢复效果。
  • 图  1  本方法的整体架构

    图  2  时序复合扩散网络细节

    图  3  典型样本可视化图例

    表  1  不同模型在各数据集上不同序列长度输入的MSE(越低越好)对比,加粗代表最佳

    数据集 序列长度 NLinear CNN LSTM GAN VAE DDPM LDM 本文方法
    ETTh1 96 0.32 0.29 0.27 0.24 0.21 0.21 0.18 0.16
    192 0.36 0.32 0.29 0.27 0.25 0.23 0.21 0.19
    ETTh2 96 0.27 0.25 0.23 0.21 0.19 0.18 0.16 0.15
    192 0.31 0.28 0.26 0.24 0.22 0.2 0.18 0.17
    ETTm1 96 0.295 0.27 0.25 0.23 0.21 0.19 0.18 0.16
    192 0.31 0.28 0.26 0.24 0.22 0.20 0.19 0.17
    ETTm2 96 0.26 0.24 0.22 0.21 0.19 0.18 0.16 0.15
    192 0.28 0.26 0.24 0.22 0.20 0.19 0.17 0.16
    Electricity 96 0.19 0.18 0.16 0.15 0.13 0.12 0.11 0.09
    192 0.21 0.19 0.18 0.16 0.15 0.13 0.12 0.11
    下载: 导出CSV

    表  2  不同模型在各数据集上不同序列长度输入的MAE(越低越好)对比

    数据集序列长度NLinearCNNLSTMGANVAEDDPMLDM本文方法
    ETTh1960.430.410.390.370.350.340.320.31
    1920.460.430.410.390.370.360.340.32
    ETTh2960.380.360.340.330.320.300.290.28
    1920.420.390.370.360.340.330.310.28
    ETTm1960.390.370.350.330.320.300.290.27
    1920.410.380.360.350.330.310.300.28
    ETTm2960.350.330.320.310.290.280.260.25
    1920.370.350.340.320.310.290.280.26
    Electricity960.270.250.240.230.2150.200.190.17
    1920.280.270.250.240.220.210.190.18
    下载: 导出CSV
  • [1] 秀春男. 张家口公司 解锁智慧电网运维密码[J]. 华北电业, 2025(2): 12–13.

    XIU Chunnan. Zhangjiakou Company unlocks the code of smart grid operation and maintenance[J]. North China Power, 2025(2): 12–13.
    [2] 马恒瑞, 袁傲添, 王波, 等. 基于深度学习的负荷预测研究综述与展望[J]. 高电压技术, 2025, 51(3): 1233-1250. doi: 10.13336/j.1003-6520.hve.20241558.

    MA Huanrui, YUAN Aotian, WANG Bo, et al. Review and Prospect of Load Forecasting Based on Deep Learning[J]. High Voltage Engineering, 2025, 51(3): 1233-1250. doi: 10.13336/j.1003-6520.hve.20241558.
    [3] 李欣, 吴凌霄, 李新宇, 等. 基于缺失数据插补和改进集成策略的电力系统暂态稳定评估[J]. 电力系统及其自动化学报, 2025, 37(8): 38–48. doi: 10.19635/j.cnki.csu-epsa.001525.

    LI Xin, WU Lingxiao, LI Xinyu, et al. Transient stability assessment of power system based on missing data imputation and improved ensemble strategy[J]. Proceedings of the CSU-EPSA, 2025, 37(8): 38–48. doi: 10.19635/j.cnki.csu-epsa.001525.
    [4] 钟尧, 刘清蝉, 李昕泓, 等. 计及非负和低秩特性的用电数据缺失值插补[J]. 重庆大学学报, 2025, 48(9): 1–11. doi: 10.11835/j.issn.1000-582X.2024.214.

    ZHONG Yao, LIU Qingchan, LI Xinhong, et al. Complete electricity data reconstruction based on weighted nonnegative matrix factorization[J]. Journal of Chongqing University, 2025, 48(9): 1–11. doi: 10.11835/j.issn.1000-582X.2024.214.
    [5] 马燕玲. 基于线性回归法的电力计量数据缺失重构研究[J]. 电气技术与经济, 2025(2): 46–47, 54. doi: 10.3969/j.issn.1673-8845.2025.02.016.

    MA Yanling. Research on reconstruction of missing electric energy metering data based on linear regression method[J]. Electrical Equipment and Economy, 2025(2): 46–47, 54. doi: 10.3969/j.issn.1673-8845.2025.02.016.
    [6] YANG Ling, ZHANG Zhilong, SONG Yang, et al. Diffusion models: A comprehensive survey of methods and applications[J]. ACM Computing Surveys, 2024, 56(7): 105. doi: 10.1145/3626235.
    [7] LUO C. Understanding diffusion models: A unified perspective[Z]. arXiv preprint arXiv: 2208.11970, 2022. doi: 10.48550/arXiv.2208.11970.
    [8] 郑骁麟, 王天昊, 王凯奇, 等. 配电系统伪量测数据增强方法[J/OL]. 电力系统及其自动化学报, 1–10. https://doi.org/10.19635/j.cnki.csu-epsa.001607, 2025.

    ZHENG Xiaolin, WANG Tianhao, WANG Kaiqi, et al. Data enhancement of pseudo-measurement in power distribution system[J/OL]. Proceedings of the CSU-EPSA, 1–10. https://doi.org/10.19635/j.cnki.csu-epsa.001607, 2025.
    [9] 庞传军, 张波, 余建明. 基于LSTM循环神经网络的短期电力负荷预测[J]. 电力工程技术, 2021, 40(1): 175–180, 194. doi: 10.12158/j.2096-3203.2021.01.025.

    PANG Chuanjun, ZHANG Bo, and YU Jianming. Short-term power load forecasting based on LSTM recurrent neural network[J]. Electric Power Engineering Technology, 2021, 40(1): 175–180, 194. doi: 10.12158/j.2096-3203.2021.01.025.
    [10] 雷傲宇, 高永强, 王嘉琦, 等. 基于多测点数据相关性的PMU量测谐波数据缺失填补方法[J/OL]. 南方电网技术, 1–9. http://kns.cnki.net/kcms/detail/44.1643.tk.20250421.1656.004.html, 2025.

    LEI Aoyu, GAO Yongqiang, WANG Jiaqi, et al. Method for filling harmonic data missing in PMU measurement based on the correlation of multi-measurement point data[J/OL]. Southern Power System Technology, 1–9. http://kns.cnki.net/kcms/detail/44.1643.tk.20250421.1656.004.html, 2025.
    [11] HO J, JAIN A, and ABBEEL P. Denoising diffusion probabilistic models[C]. Proceedings of the 34th International Conference on Neural Information Processing Systems, Vancouver, Canada, 2020: 574.
    [12] SONG Yang, SOHL-DICKSTEIN J, KINGMA D P, et al. Score-based generative modeling through stochastic differential equations[C]. Proceedings of the 9th International Conference on Learning Representations, Vienna, Austria, 2021: 1–35.
    [13] SONG Yang, DURKAN C, MURRAY I, et al. Maximum likelihood training of score-based diffusion models[C]. Proceedings of the 35th International Conference on Neural Information Processing Systems, 2021: 109.
    [14] NICHOL A Q and DHARIWAL P. Improved denoising diffusion probabilistic models[C]. Proceedings of the 38th International Conference on Machine Learning, 2021: 8162–8171.
    [15] KARRAS T, AITTALA M, AILA T, et al. Elucidating the design space of diffusion-based generative models[C]. Proceedings of the 36th International Conference on Neural Information Processing Systems, New Orleans, USA, 2022: 1926.
    [16] ROMBACH R, BLATTMANN A, LORENZ D, et al. High-resolution image synthesis with latent diffusion models[C]. Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, New Orleans, USA, 2022: 10674–10685. doi: 10.1109/CVPR52688.2022.01042.
    [17] TASHIRO Y, SONG Jiaming, SONG Yang, et al. CSDI: Conditional score-based diffusion models for probabilistic time series imputation[C]. Proceedings of the 35th International Conference on Neural Information Processing Systems, 2021: 1900.
    [18] ALCARAZ J M L and STRODTHOFF N. Diffusion-based time series imputation and forecasting with structured state space models[Z]. arXiv preprint arXiv: 2208.09399, 2022. doi: 10.48550/arXiv.2208.09399.
    [19] ZHOU Haoyi, ZHANG Shanghang, PENG Jieqi, et al. Informer: Beyond efficient transformer for long sequence time-series forecasting[C]. Proceedings of the 35th AAAI Conference on Artificial Intelligence, Virtual Conference, 2021: 11106–11115. doi: 10.1609/aaai.v35i12.17325.
    [20] HEBRAIL G and BERARD A. Individual household electric power consumption[EB/OL]. https://doi.org/10.24432/C58K54, 2006.
    [21] ZENG Ailing, CHEN Muxi, ZHANG Lei, et al. Are transformers effective for time series forecasting?[C]. Proceedings of the 37th AAAI Conference on Artificial Intelligence, Washington, USA, 2023: 11121–11128. doi: 10.1609/aaai.v37i9.26317.
    [22] BAI Shaojie, KOLTER J Z, and KOLTUN V. An empirical evaluation of generic convolutional and recurrent networks for sequence modeling[Z]. arXiv preprint arXiv: 1803.01271, 2018. doi: 10.48550/arXiv.1803.01271.
    [23] GUPTA P, MEHLAWAT M K, and KHAN A Z. Multi-period portfolio optimization using coherent fuzzy numbers in a credibilistic environment[J]. Expert Systems with Applications, 2021, 167: 114135. doi: 10.1016/j.eswa.2020.114135.
    [24] GOODFELLOW I J, POUGET-ABADIE J, MIRZA M, et al. Generative adversarial nets[C]. Proceedings of the 28th International Conference on Neural Information Processing Systems, Montreal, Canada, 2014: 2672–2680.
    [25] KINGMA D P and WELLING M. Auto-encoding variational bayes[C]. Proceedings of the 2nd International Conference on Learning Representations, Banff, Canada, 2014.
    [26] CHEN Peng, ZHANG Yingying, CHENG Yunyao, et al. Pathformer: Multi-scale transformers with adaptive pathways for time series forecasting[C]. Proceedings of the 12th International Conference on Learning Representations, Vienna, Austria, 2024.
  • 加载中
图(3) / 表(2)
计量
  • 文章访问数:  30
  • HTML全文浏览量:  9
  • PDF下载量:  1
  • 被引次数: 0
出版历程
  • 收稿日期:  2025-05-20
  • 修回日期:  2025-10-11
  • 录用日期:  2025-11-03
  • 网络出版日期:  2025-11-12

目录

    /

    返回文章
    返回