高级搜索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于报头特征驱动的加密流量跨维度协同识别框架

王梦寒 周正春 吉庆兵

王梦寒, 周正春, 吉庆兵. 基于报头特征驱动的加密流量跨维度协同识别框架[J]. 电子与信息学报. doi: 10.11999/JEIT250434
引用本文: 王梦寒, 周正春, 吉庆兵. 基于报头特征驱动的加密流量跨维度协同识别框架[J]. 电子与信息学报. doi: 10.11999/JEIT250434
WANG Menghan, ZHOU Zhengchun, JI Qingbing. A Cross-Dimensional Collaborative Framework for Header-Metadata-Driven Encrypted Traffic Identification[J]. Journal of Electronics & Information Technology. doi: 10.11999/JEIT250434
Citation: WANG Menghan, ZHOU Zhengchun, JI Qingbing. A Cross-Dimensional Collaborative Framework for Header-Metadata-Driven Encrypted Traffic Identification[J]. Journal of Electronics & Information Technology. doi: 10.11999/JEIT250434

基于报头特征驱动的加密流量跨维度协同识别框架

doi: 10.11999/JEIT250434 cstr: 32379.14.JEIT250434
基金项目: 四川省自然基金创新群体项目(2024NSFTD0015),保密通信全国重点实验室稳定计划支持项目(WD202403)
详细信息
    作者简介:

    王梦寒:女,博士生,研究方向为网络安全与人工智能

    周正春:男,教授,研究方向为序列编码、压缩感知以及网络安全与人工智能

    吉庆兵:男,研究员,研究方向为保密通信

    通讯作者:

    吉庆兵 jqbdxy@163.com

  • 中图分类号: TN915.08; TP393.08

A Cross-Dimensional Collaborative Framework for Header-Metadata-Driven Encrypted Traffic Identification

Funds: Innovation Group Project of Sichuan Provincial Natural Science Foundation (2024NSFTD0015), Stability Program of National Key Laboratory of Security Communication (WD202403)
  • 摘要: 在网络通信加密技术广泛应用的背景下,加密流量识别已成为网络安全领域亟待攻克的核心难题。传统基于载荷内容的识别方法,因加密算法的持续升级,面临特征失效的风险,进而在动态网络环境中产生检测盲区。与此同时,报头作为协议交互的关键载体,其结构化特征价值尚未得到充分挖掘。此外,随着加密协议的不断发展,现有的加密流量识别方法还面临特征解释性不足、模型在对抗攻击下鲁棒性薄弱等问题。针对上述挑战,该文提出基于报头特征驱动的加密流量跨维度协同识别框架,分别从网络流量特征选取与识别性能、量化特征贡献度的可解释性评估以及对抗性扰动对模型稳健性影响三个维度进行分析,系统地揭示和证明了报头特征在加密流量识别中占主导作用,突破了传统单视角分析的局限性,革新了传统方法依赖载荷数据的固有认知。该识别框架不仅能分析深度模型的性能边界、评估决策的可信性,而且能通过有效筛选特征剪除冗余,在降低模型复杂度的基础上提升加密场景下的抗干扰能力,进而设计更轻量化、更加稳健的加密流量识别模型。最后,在ISCXVPN2016和ISCXTor2016数据集上的对比实验表明:在识别性能维度,仅基于报头特征的模型F1分数较完整流量模型最高提升6%,较仅基于有载荷特征的模型最高提升61%,验证了报头特征在分类任务中的有效性;在可解释性评估中,通过特征贡献度量化方法发现,报头特征相关性得分的平均占比相较于载荷特征最多高出 89.8%,凸显其在模型决策中的主导性影响;在抗干扰鲁棒性方面,含报头特征的模型在同等带宽扰动下的最大抗干扰性能保持率较纯载荷模型相比,优势显著,最大差距达 98.46%,证实了报头特征对增强模型鲁棒性的关键作用。
  • 图  1  基于报头特征驱动的加密流量跨维度协同识别框架

    图  2  两种数据集下三种数据形式的F1得分结果

    图  3  两种数据集的每种类型数据的输入字节在LRP方法下的相关性得分

    图  4  两种数据集的每种类型数据的输入字节在DTD方法下的相关性得分TOR

    图  5  基于两种扰动在不同BW下HP的F1得分情况

    图  6  基于两种扰动在不同BW下P的F1得分情况

    表  1  数据集样本分布情况(预处理后)

    流量类型ISCXVPN2016
    样本数量/个
    ISCXTor2016
    样本数量/个
    Chat216028284
    Email248816579
    Filetransfer2563076912
    P2P2170355818
    Streaming1510340544
    VoIP1246227557
    下载: 导出CSV

    表  2  注入扰动后的样本分布情况

    流量类型ISCXVPN2016
    样本数量/个
    ISCXTor2016
    样本数量/个
    Chat7209428
    Email8295526
    Filetransfer854325637
    P2P723418606
    Streaming503413514
    VoIP41549186
    下载: 导出CSV

    表  3  参数设置表

    方法参数名称参数符号参数值方法参数名称参数符号参数值
    1D CNN学习率lr0.002PGD训练集/测试集train/test8:2
    权重衰减weight_decay0.001最大迭代次数max_iter10
    训练轮数epoch50扰动阈值eps0.3
    批量大小batch_size1024梯度扰动步长eps_iter0.03
    下载: 导出CSV

    表  4  两种数据集下模型的流量识别效果

    数据集 数据类型 Precision Recall F1 score Accuracy
    H P HP H P HP H P HP H P HP
    ISCXVPN2016 Chat 0.92 0.63 0.90 0.94 0.50 0.95 0.93 0.59 0.93 0.94 0.55 0.95
    Email 0.92 0.86 0.96 0.88 0.52 0.83 0.90 0.65 0.89 0.88 0.52 0.83
    Filetransfer 0.99 0.54 0.99 0.99 0.94 1.00 0.99 0.69 0.99 0.99 0.94 0.99
    P2P 1.00 0.91 1.00 1.00 0.60 1.00 1.00 0.73 1.00 1.00 0.60 1.00
    Streaming 0.99 0.53 0.99 1.00 0.29 1.00 0.99 0.38 0.99 1.00 0.29 1.00
    VoIP 0.99 0.81 0.98 0.97 0.51 0.98 0.98 0.63 0.98 0.97 0.51 0.98
    ISCXTor2016 Chat 0.88 0.84 0.64 0.53 0.24 0.67 0.67 0.38 0.65 0.50 0.37 0.81
    Email 0.98 0.98 0.97 0.90 0.55 0.83 0.94 0.70 0.89 0.95 0.90 0.96
    Filetransfer 0.99 1.00 0.99 0.98 0.71 0.86 0.98 0.83 0.92 0.98 0.94 0.98
    P2P 0.95 0.87 0.90 0.97 0.89 0.97 0.96 0.88 0.94 0.97 0.97 0.99
    Streaming 0.85 0.55 0.85 0.97 0.89 0.97 0.91 0.68 0.91 0.97 0.96 0.98
    VoIP 0.88 0.81 0.86 0.79 0.82 0.84 0.83 0.81 0.85 0.81 0.86 0.92
    下载: 导出CSV

    表  5  两种数据集的每种类型数据的报头和载荷在LRP和DTD可解释方法下的相关性得分的平均占比

    方法数据集类别ChatEmailFiletransferP2PStreamingVoIP
    LRPISCXVPN2016H0.890.950.880.870.860.89
    P0.110.050.120.130.140.11
    ISCXTor2016H0.720.620.570.750.570.82
    P0.280.380.430.250.430.18
    DTDISCXVPN2016H0.880.820.970.840.880.88
    P0.120.180.030.160.120.12
    ISCXTor2016H0.760.700.590.720.750.83
    P0.240.300.410.280.250.17
    下载: 导出CSV
  • [1] CHOOROD P, WEIR G, and FERNANDO A. Classifying tor traffic encrypted payload using machine learning[J]. IEEE Access, 2024, 12: 19418–19431. doi: 10.1109/ACCESS.2024.3356073.
    [2] SHEN Meng, YE Ke, LIU Xingtong, et al. Machine learning-powered encrypted network traffic analysis: A comprehensive survey[J]. IEEE Communications Surveys & Tutorials, 2023, 25(1): 791–824. doi: 10.1109/COMST.2022.3208196.
    [3] ABBASI M, SHAHRAKI A, and TAHERKORDI A. Deep learning for network traffic monitoring and analysis (NTMA): A survey[J]. Computer Communications, 2021, 170: 19–41. doi: 10.1016/j.comcom.2021.01.021.
    [4] OKONKWO Z, FOO E, LI Qinyi, et al. A CNN based encrypted network traffic classifier[C]. Proceedings of 2022 Australasian Computer Science Week, Brisbane, Australia, 2022: 74–83. doi: 10.1145/3511616.3513101.
    [5] WANG Wei, ZHU Ming, WANG Jinlin, et al. End-to-end encrypted traffic classification with one-dimensional convolution neural networks[C]. Proceedings of 2017 IEEE International Conference on Intelligence and Security Informatics, Beijing, China, 2017: 43–48. doi: 10.1109/ISI.2017.8004872.
    [6] CUI Yuqing and LI Aihua. Research on network encrypted traffic detection technology based on CNN+LSTM[C]. Proceedings of 2024 2nd International Conference on Signal Processing and Intelligent Computing, Guangzhou, China, 2024: 191–195. doi: 10.1109/SPIC62469.2024.10691502.
    [7] HU Feifei, ZHANG Situo, LIN Xuebin, et al. Network traffic classification model based on attention mechanism and spatiotemporal features[J]. EURASIP Journal on Information Security, 2023, 2023(1): 6. doi: 10.1186/s13635-023-00141-4.
    [8] HONG Yueping, LI Qi, YANG Yanqing, et al. Graph based encrypted malicious traffic detection with hybrid analysis of multi-view features[J]. Information Sciences, 2023, 644: 119229. doi: 10.1016/j.ins.2023.119229.
    [9] YU Rongwei, GUO Xiya, ZHANG Peihao, et al. HGNN-ETC: Higher-order graph neural network based on chronological relationships for encrypted traffic classification[J]. Computers, Materials & Continua, 2024, 81(2): 2643–2664. doi: 10.32604/cmc.2024.056165.
    [10] DIAO Zulong, XIE Gaogang, WANG Xin, et al. EC-GCN: A encrypted traffic classification framework based on multi-scale graph convolution networks[J]. Computer Networks, 2023, 224: 109614. doi: 10.1016/j.comnet.2023.109614.
    [11] LIM W, YONG K S C, LAU B T, et al. Future of generative adversarial networks (GAN) for anomaly detection in network security: A review[J]. Computers & Security, 2024, 139: 103733. doi: 10.1016/j.cose.2024.103733.
    [12] HU Guangwu, XIAO Xi, SHEN Meng, et al. TCGNN: Packet-grained network traffic classification via Graph Neural Networks[J]. Engineering Applications of Artificial Intelligence, 2023, 123: 106531. doi: 10.1016/j.engappai.2023.106531.
    [13] JAIN S and WALLACE B C. Attention is not explanation[C]. Proceedings of 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Minneapolis, USA, 2019: 3543–3556. doi: 10.18653/v1/N19-1357.
    [14] BINDER A, MONTAVON G, LAPUSCHKIN S, et al. Layer-wise relevance propagation for neural networks with local renormalization layers[C]. Proceedings of the 25th International Conference on Artificial Neural Networks and Machine Learning, Barcelona, Spain, 2016: 63–71. doi: 10.1007/978-3-319-44781-0_8.
    [15] KAUFFMANN J, MÜLLER K R, and MONTAVON G. Towards explaining anomalies: A deep Taylor decomposition of one-class models[J]. Pattern Recognition, 2020, 101: 107198. doi: 10.1016/j.patcog.2020.107198.
    [16] MADRY A, MAKELOV A, SCHMIDT L, et al. Towards deep learning models resistant to adversarial attacks[C]. Proceedings of the 6th International Conference on Learning Representations, Vancouver, Canada, 2018.
    [17] DRAPER-GIL G, LASHKARI A H, MAMUN M S I, et al. Characterization of encrypted and VPN traffic using time-related features[C]. Proceedings of the 2nd International Conference on Information Systems Security and Privacy, Rome, Italy, 2016: 407–414. doi: 10.5220/0005740704070414.
    [18] LASHKARI A H, GIL G D, MAMUN M S I, et al. Characterization of tor traffic using time based features[C]. Proceedings of the 3rd International Conference on Information Systems Security and Privacy, Porto, Portugal, 2017: 253–262. doi: 10.5220/0006105602530262.
  • 加载中
图(6) / 表(5)
计量
  • 文章访问数:  7
  • HTML全文浏览量:  2
  • PDF下载量:  0
  • 被引次数: 0
出版历程
  • 网络出版日期:  2025-10-20

目录

    /

    返回文章
    返回