高级搜索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

HRIS辅助的分层稀疏重构混合远近场源定位算法

杨青青 蒲雪莱 彭艺 李辉 杨秋萍

杨青青, 蒲雪莱, 彭艺, 李辉, 杨秋萍. HRIS辅助的分层稀疏重构混合远近场源定位算法[J]. 电子与信息学报. doi: 10.11999/JEIT250429
引用本文: 杨青青, 蒲雪莱, 彭艺, 李辉, 杨秋萍. HRIS辅助的分层稀疏重构混合远近场源定位算法[J]. 电子与信息学报. doi: 10.11999/JEIT250429
YANG Qingqing, PU Xuelai, PENG Yi, LI Hui, YANG Qiuping. HRIS-Aided Layered Sparse Reconstruction Hybrid Near- and Far-Field Source Localization Algorithm[J]. Journal of Electronics & Information Technology. doi: 10.11999/JEIT250429
Citation: YANG Qingqing, PU Xuelai, PENG Yi, LI Hui, YANG Qiuping. HRIS-Aided Layered Sparse Reconstruction Hybrid Near- and Far-Field Source Localization Algorithm[J]. Journal of Electronics & Information Technology. doi: 10.11999/JEIT250429

HRIS辅助的分层稀疏重构混合远近场源定位算法

doi: 10.11999/JEIT250429 cstr: 32379.14.JEIT250429
基金项目: 国家自然科学基金 (62461030),云南省基础研究重点项目(202401AS070105)
详细信息
    作者简介:

    杨青青:博士,讲师,研究方向为无人机路径规划、智能反射面辅助通信

    蒲雪莱:硕士生,研究方向为智能反射面辅助通信、混合场定位

    通讯作者:

    彭艺 pengyi@kust.edu.cn

  • 中图分类号: TN929.5

HRIS-Aided Layered Sparse Reconstruction Hybrid Near- and Far-Field Source Localization Algorithm

Funds: The National Natural Science Foundation of China (62461030), The Key Basic Research Project of Yunnan Province (202401AS070105)
  • 摘要: 随着可重构智能超表面(RIS)技术的引入,更大的RIS阵列和更高的工作频率扩大了近场通信区域,而基于RIS的辅助定位技术也受到了极大关注。由于近场定位与传统的远场通信属于异构定位网络,其混合定位依赖于远场与近场通信系统网络融合的定位估计算法实现。因此,该文提出一种融合分层稀疏重构与4阶累积量(FOC)矩阵的混合场定位算法,通过引入混合型RIS(HRIS)架构捕获用户信号,有效解决了多跳信道累积误差的问题。该算法利用3组FOC矩阵,将二维角度谱搜索简化为两个一维谱搜索,分阶段实现仰角、方位角和距离参数的估计。在各阶段参数估计过程中结合分层稀疏字典与动态调谐因子衰减机制,逐层逼近真实参数,以进一步降低算法复杂度。仿真结果表明,在低信噪比与小快拍条件下,该文方法在大多数典型混合场景下,角度与距离估计的均方根误差(RMSE)均优于双阶段多重信号分类(TSMUSIC)算法与混合正交匹配追踪(OMP)算法以及基于全息多输入多输出(HMIMO)系统的混合场定位算法,同时展现出更强的抗噪性能与更低的计算开销,验证了其在复杂混合场场景下的有效性与鲁棒性。
  • 图  1  HRIS辅助混合场源定位系统模型

    图  2  通信定位传输协议

    图  4  有源对称单元配置

    图  3  分层搜索优化机制

    图  5  不同SNR下各算法的RMSE

    图  6  不同快拍数下各算法RMSE

    图  7  分层搜索与全局搜索的复杂度对比

    1  RIS辅助混合场源分级仰角估计算法

     (1) 输入参数:$\Delta _0^\theta $; $\varepsilon _0^\theta $; $\delta _\Delta ^\theta $;$\delta _\varepsilon ^\theta $;码字索引$I = 0$;最大迭代层数$L_{\max }^\theta $;最小步长精度$\Delta _{\min }^\theta $;
     (2) 初始化参数:4阶累积量矩阵${{\boldsymbol{C}}_1}$,奇异值分解(SVD),获取信号子空间和噪声子空间;获取仰角范围${\varTheta ^1}$;
     (3) ${\text{while }}l \le {L_{\max }}{\text{ \& \& }}{\Delta ^{l + 1}} < \Delta _{\min }^\theta {\text{ do}}$
     (4)  $ {\boldsymbol{B}}_l^\theta = \left\{ {{\boldsymbol{b}}(\theta _{\min }^l),{\boldsymbol{b}}(\theta _{\min }^l + \Delta {\theta ^l}),} \right.\left. { \cdots ,{\boldsymbol{b}}(\theta _{\max }^l)} \right\} $,权重矩阵${\boldsymbol{W}}_l^\theta $
     (5)  $ {\text{if }}\left\| {{{{{\hat {\boldsymbol{C}}}}}_{{S_1}}} - {\boldsymbol{B}}_l^\theta {\boldsymbol{T}}_l^\theta } \right\| \le \sqrt {\varepsilon _l^\theta } {\text{ then}} $
     (6)   $ \mathop {\min }\limits_{{\boldsymbol{T}}_\theta ^{{l_2}}} {\left\| {{\boldsymbol{W}}_l^\theta {\boldsymbol{T}}_l^\theta } \right\|_1} $
     (7)   计算码字能量:$ {\boldsymbol{E}}(q) = \sum\limits_{k = 1}^K {{{\left| {{\boldsymbol{T}}_l^\theta (q,k)} \right|}^2}} = \left\| {{\boldsymbol{T}}_l^\theta (q,:)} \right\|_2^2 $
     (8)   能量升序排列返回索引:$[V,{\text{opt}}] = Sort[E({q_1}),E({q_2}), \cdots ,E({q_Q})]$
     (9)   选择前$K$个能量构建信任区间:$ {\varTheta ^{l + 1}} = \mathop \cup \limits_{k = 1}^K {\left\{ {b({\theta _k} \pm {{\Delta _l^\theta } \mathord{\left/ {\vphantom {{\Delta _l^\theta } 2}} \right. } 2})} \right\}_{k \in \kappa }} $
     (10)   更新调谐因子、步长、层数:$\varepsilon _{l + 1}^\theta = {\delta _\varepsilon } \cdot \varepsilon _l^\theta $,$\Delta _{l + 1}^\theta = {\delta _\Delta } \cdot \Delta _l^\theta $,$l = l + 1$
     (11) ${\text{end while}}$
     (12) 输出参数:$\stackrel \frown{\theta } $
    下载: 导出CSV

    表  1  实验仿真参数设置

    仿真参数/单位取值
    近场源${K_1}$(个)2
    远场源${K_2}$(个)2
    天线数量$N$(根)64
    反射单元数${N_R}$(个)16×16
    噪声功率${\sigma ^2}$(dBm)−174
    最大层数${L_{\max }}$(层)3
    初始角度步长$\Delta _0^\theta $,$\Delta _0^\phi $(°)10
    初始距离步长$\Delta _0^d$(m)0.5
    步长缩减因子${\delta _\Delta }$0.5
    正则化衰减率${\delta _\varepsilon }$0.5
    初始调谐因子${\varepsilon _0}$0.1
    下载: 导出CSV
  • [1] LIANG Junli and LIU Ding. Passive localization of mixed near-field and far-field sources using two-stage MUSIC algorithm[J]. IEEE Transactions on Signal Processing, 2010, 58(1): 108–120. doi: 10.1109/TSP.2009.2029723.
    [2] HE Jin, SWAMY M N S, and AHMAD M O. Efficient application of MUSIC algorithm under the coexistence of far-field and near-field sources[J]. IEEE Transactions on Signal Processing, 2012, 60(4): 2066–2070. doi: 10.1109/TSP.2011.2180902.
    [3] TIAN Ye and SUN Xiaoying. Mixed sources localisation using a sparse representation of cumulant vectors[J]. IET Signal Processing, 2014, 8(6): 606–611. doi: 10.1049/iet-spr.2013.0271.
    [4] CANDÈS E J, WAKIN M B, and BOYD S P. Enhancing sparsity by reweighted ℓ1 minimization[J]. Journal of Fourier Analysis and Applications, 2008, 14(5/6): 877–905. doi: 10.1007/s00041-008-9045-x.
    [5] KUANG Meidong, WANG Yuexian, WANG Ling, et al. Localisation and classification of mixed far‐field and near‐field sources with sparse reconstruction[J]. IET Signal Processing, 2022, 16(4): 426–437. doi: 10.1049/sil2.12107.
    [6] STRINATI E C, ALEXANDROPOULOS G C, WYMEERSCH H, et al. Reconfigurable, intelligent, and sustainable wireless environments for 6G smart connectivity[J]. IEEE Communications Magazine, 2021, 59(10): 99–105. doi: 10.1109/MCOM.001.2100070.
    [7] HASSOUNA S, JAMSHED M A, UR-REHMAN M, et al. RIS-assisted near-field localization using practical phase shift model[J]. Scientific Reports, 2024, 14(1): 4350. doi: 10.1038/s41598-024-54859-3.
    [8] XIE Hao, LI Dong, and GU Bowen. Exploring hybrid active-passive RIS-aided MEC systems: From the mode-switching perspective[J]. IEEE Transactions on Wireless Communications, 2024, 23(9): 11291–11308. doi: 10.1109/TWC.2024.3380841.
    [9] XIE Hao, LI Dong, and GU Bowen. Enhancing spectrum sensing via reconfigurable intelligent surfaces: Passive or active sensing and how many reflecting elements are needed?[J]. IEEE Transactions on Wireless Communications, 2024, 23(10): 14940–14955. doi: 10.1109/TWC.2024.3422026.
    [10] HU Xiaoling, ZHANG Rui, and ZHONG Caijun. Semi-passive elements assisted channel estimation for intelligent reflecting surface-aided communications[J]. IEEE Transactions on Wireless Communications, 2022, 21(2): 1132–1142. doi: 10.1109/TWC.2021.3102446.
    [11] ZHANG Xing and ZHANG Haiyang. Hybrid reconfigurable intelligent surfaces-assisted near-field localization[J]. IEEE Communications Letters, 2023, 27(1): 135–139. doi: 10.1109/LCOMM.2022.3215253.
    [12] HE Jiguang, WYMEERSCH H, SANGUANPUAK T, et al. Adaptive beamforming design for mmWave RIS-aided joint localization and communication[C]. 2020 IEEE Wireless Communications and Networking Conference Workshops (WCNCW), Seoul, Korea (South), 2020: 1–6. doi: 10.1109/WCNCW48565.2020.9124848.
    [13] WANG Ziyi, LIU Zhenyu, SHEN Yuan, et al. Source localization with intelligent surfaces[C]. ICC 2022-IEEE International Conference on Communications, Seoul, Korea, Republic of, 2022: 895–900. doi: 10.1109/ICC45855.2022.9838638.
    [14] CAO Mengyuan, ZHANG Haobo, DI Boya, et al. Unified near-field and far-field localization with holographic MIMO[C]. 2024 IEEE Wireless Communications and Networking Conference (WCNC), Dubai, United Arab Emirates, 2024: 1–6. doi: 10.1109/WCNC57260.2024.10570719.
    [15] ZHANG Shupei, ZHANG Yutong, and DI Boya. Large-scale intelligent surfaces enabled unified near-field and far-field communications: Codebook design and beam training[J]. IEEE Network, 2025, 39(1): 90–96. doi: 10.1109/MNET.2024.3491301.
    [16] MOLAEI A M and HOSEINZADE M. Derivation of multidimensional stochastic Cramer‐Rao bound for mixture of noncoherent and coherent near/far field signals[J]. Transactions on Emerging Telecommunications Technologies, 2020, 31(6): e3971. doi: 10.1002/ett.3971.
    [17] MALIOUTOV D, CETIN M, and WILLSKY A S. A sparse signal reconstruction perspective for source localization with sensor arrays[J]. IEEE Transactions on Signal Processing, 2005, 53(8): 3010–3022. doi: 10.1109/TSP.2005.850882.
  • 加载中
图(7) / 表(2)
计量
  • 文章访问数:  12
  • HTML全文浏览量:  6
  • PDF下载量:  2
  • 被引次数: 0
出版历程
  • 收稿日期:  2025-05-19
  • 修回日期:  2025-10-14
  • 网络出版日期:  2025-10-22

目录

    /

    返回文章
    返回