高级搜索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

本地差分隐私下技能感知的任务分配算法研究

方贤进 甄雅茹 张朋飞 黄珊珊

方贤进, 甄雅茹, 张朋飞, 黄珊珊. 本地差分隐私下技能感知的任务分配算法研究[J]. 电子与信息学报. doi: 10.11999/JEIT250425
引用本文: 方贤进, 甄雅茹, 张朋飞, 黄珊珊. 本地差分隐私下技能感知的任务分配算法研究[J]. 电子与信息学报. doi: 10.11999/JEIT250425
FANG Xianjin, ZHEN Yaru, ZHANG Pengfei, HUANG Shanshan. Research on Skill-Aware Task Assignment Algorithm under Local Differential Privacy[J]. Journal of Electronics & Information Technology. doi: 10.11999/JEIT250425
Citation: FANG Xianjin, ZHEN Yaru, ZHANG Pengfei, HUANG Shanshan. Research on Skill-Aware Task Assignment Algorithm under Local Differential Privacy[J]. Journal of Electronics & Information Technology. doi: 10.11999/JEIT250425

本地差分隐私下技能感知的任务分配算法研究

doi: 10.11999/JEIT250425 cstr: 32379.14.JEIT250425
基金项目: 国家自然科学基金(61572034)
详细信息
    作者简介:

    方贤进:男,教授,研究方向为网络与信息安全、智能计算

    甄雅茹:女,硕士生,研究方向为数据隐私保护

    张朋飞:男,讲师,研究方向为数据隐私保护

    黄珊珊:女,硕士生,研究方向为群智感知、隐私保护

    通讯作者:

    张朋飞 zpf.bupt@bupt.cn

  • 中图分类号: TN918; TP391

Research on Skill-Aware Task Assignment Algorithm under Local Differential Privacy

Funds: The National Natural Science Foundation of China (61572034)
  • 摘要: 空间众包任务分配依托平台将具有地理位置属性的任务指派给周边工人,然而工人在上传实时位置信息过程中,行踪易被泄露或滥用,存在隐私风险。现有方法虽采用可信第3方或差分隐私进行位置扰动,但在多技能任务及技能分布不均场景下难以兼顾隐私保护与分配效率。为此,该文提出一种融合隐私保护与技能感知的协同分配算法。首先采用截断拉普拉斯机制对工人位置加噪,在满足本地差分隐私的同时降低定位偏差;其次引入基于信息熵的技能多样性评估指标,并设计动态策略优化工人集合技能分布;再构建基于技能贡献值的贪婪算法,并结合时空与预算约束提出3种剪枝策略提升计算效率。实验结果表明,该方法在服务质量损失、任务完成率与平均预算剩余率等方面表现优良,实现了隐私保护与任务分配效率之间的有效平衡。
  • 图  1  多技能任务分配中旧屋修缮实例

    图  2  TKY和NYC上的服务质量损失

    图  3  熵值和技能贡献值变化

    图  4  不同数据集上隐私预算对平均预算剩余率的影响

    图  5  不同数据集上隐私预算对任务完成率的影响

    表  1  符号及含义

    符号 描述
    $ {\mathcal{T}} $ 在时间点$p$处的$\mathcal{M}$个空间任务${t_j}$的集合
    ${\mathcal{W}}$ 在时间点$p$处的${\mathcal{N}}$个工人${w_i}$的集合
    $ \mathcal{W}' $ 实现技能多样性均衡的工人集合
    $ {\mathcal{A}} $ 系统中存在的技能集合
    ${e_j}$ 到达任务${t_j}$所在位置的截止时间
    ${l_i}\left( p \right)$ 工人${w_i}$在时间点$p$时的真实位置
    ${l_i}^\prime \left( p \right)$ 工人${w_i}$在时间点$p$时的模糊位置
    ${l_j}$ 任务${t_j}$的位置
    ${\mathcal{X}_i}$ 工人${w_i}$拥有的一组技能
    ${\mathcal{Y}_j}$ 任务${t_j}$所需技能的集合
    ${d_i}$ 工人${w_i}$的最大移动距离
    ${\mathcal{B}_j}$ 任务${t_j}$的最大预算
    $\mathcal{R}$ 时间点$p$时的任务分配结果集
    下载: 导出CSV

    表  2  不同数据集上隐私预算对平均预算剩余率的影响

    数据集 $\varepsilon $ ARBR
    PUGR GR OE-ELA TsPY
    CLP LP CLP LP CLP LP CLP LP
    TKY 0 0.7890 0.5200 0.7156 0.5441
    1 0.7135 0.6431 0.1689 0.1666 0.4460 0.4545 0.4536 0.4091
    3 0.7716 0.7153 0.1956 0.1219 0.4832 0.6106 0.5074 0.5033
    5 0.8269 0.7505 0.2562 0.4079 0.4395 0.5055 0.5254 0.1512
    NYC 0 0.5813 0.4881 0.5998 0.5259
    1 0.5108 0.6095 0.1447 0.1604 0.3731 0.3231 0.4070 0.2039
    3 0.7535 0.7091 0.1747 0.2404 0.4932 0.5826 0.5487 0.4468
    5 0.7141 0.7300 0.3479 0.2246 0.8063 0.5535 0.8979 0.6780
    下载: 导出CSV
  • [1] XIE Yuan, WANG Yongheng, LI Kenli, et al. Satisfaction-aware task assignment in spatial crowdsourcing[J]. Information Sciences, 2023, 622: 512–535. doi: 10.1016/j.ins.2022.11.081.
    [2] XU Lang, LI Jiqiang, ZHANG Hao, et al. A privacy-preserving takeaway delivery service scheme[C]. 17th International Conference on Provable and Practical Security, Wuhan, China, 2023: 385–403. doi: 10.1007/978-3-031-45513-1_21.
    [3] 孟秀丽, 杨静, 吴一凡. 考虑奖惩机制和成本互担的众包物流服务质量最优控制[J]. 中国管理科学, 2022, 30(11): 182–195. doi: 10.16381/j.cnki.issn1003-207x.2020.0746.

    MENG Xiuli, YANG Jing, and WU Yifan. Optimal control of crowdsourcing logistics service quality considering reward-penalty mechanism and cost sharing[J]. Chinese Journal of Management Science, 2022, 30(11): 182–195. doi: 10.16381/j.cnki.issn1003-207x.2020.0746.
    [4] LIN Ping, ZHANG Xiaosan, YAN Shuming, et al. Dynamic capabilities and business model innovation of platform enterprise: A case study of DiDi taxi[J]. Scientific Programming, 2020, 2020(1): 8841368. doi: 10.1155/2020/8841368.
    [5] WANG Jianqiang, PAN Jialu, ZHENG Liping, et al. A systematic space-time route planning approach coordinated with task assignment for autonomous delivery vehicles fleet[J]. IEEE Access, 2023, 11: 79370–79383. doi: 10.1109/ACCESS.2023.3299856.
    [6] GUO Bin, LIU Yan, WANG Leye, et al. Task allocation in spatial crowdsourcing: Current state and future directions[J]. IEEE Internet of Things Journal, 2018, 5(3): 1749–1764. doi: 10.1109/JIOT.2018.2815982.
    [7] 冯登国, 张敏, 叶宇桐. 基于差分隐私模型的位置轨迹发布技术研究[J]. 电子与信息学报, 2020, 42(1): 74–88. doi: 10.11999/JEIT190632.

    FENG Dengguo, ZHANG Min, and YE Yutong. Research on differentially private trajectory data publishing[J]. Journal of Electronics & Information Technology, 2020, 42(1): 74–88. doi: 10.11999/JEIT190632.
    [8] NAVIDAN H, MOGHTADAIEE V, NAZARAN N, et al. Hide me behind the noise: Local differential privacy for indoor location privacy[C]. 2022 IEEE European Symposium on Security and Privacy Workshops (EuroS&PW), Genoa, Italy, 2022: 514–523. doi: 10.1109/EuroSPW55150.2022.00061.
    [9] ZHANG Pengfei, FANG Xiang, ZHANG Zhikun, et al. Horizontal multi-party data publishing via discriminator regularization and adaptive noise under differential privacy[J]. Information Fusion, 2025, 120: 103046. doi: 10.1016/j.inffus.2025.103046.
    [10] 李可佳, 胡学先, 陈越, 等. 基于主成分分析和函数机制的差分隐私线性回归算法[J]. 计算机科学, 2023, 50(8): 342–351. doi: 10.11896/jsjkx.220800255.

    LI Kejia, HU Xuexian, CHEN Yue, et al. Differential privacy linear regression algorithm based on principal component analysis and Functional mechanism[J]. Computer Science, 2023, 50(8): 342–351. doi: 10.11896/jsjkx.220800255.
    [11] ZHANG Pengfei, CHENG Xiang, ZHANG Zhikun, et al. Maximizing area coverage in privacy-preserving worker recruitment: A prior knowledge-enhanced geo-indistinguishable approach[J]. IEEE Transactions on Information Forensics and Security, 2025, 20: 5138–5151. doi: 10.1109/TIFS.2025.3568163.
    [12] ZHANG Pengfei, SUN Hong, ZHANG Zhikun, et al. Privacy-preserving recommendations with mixture model-based matrix factorization under local differential privacy[J]. IEEE Transactions on Industrial Informatics, 2025, 21(7): 5451–5459. doi: 10.1109/TII.2025.3555993.
    [13] LIU Yixuan, ZHAO Suyun, XIONG Li, et al. Echo of neighbors: Privacy amplification for personalized private federated learning with shuffle model[C]. The 37th AAAI Conference on Artificial Intelligence, Washington, USA, 2023: 11865–11872. doi: 10.1609/aaai.v37i10.26400.
    [14] 吴大鹏, 管芃, 张普宁, 等. 群组协作的移动群智感知任务分配方法[J]. 电子与信息学报, 2023, 45(12): 4308–4316. doi: 10.11999/JEIT221046.

    WU Dapeng, GUAN Peng, ZHANG Puning, et al. Task allocation method of mobile crowdsensing based on group collaboration[J]. Journal of Electronics & Information Technology, 2023, 45(12): 4308–4316. doi: 10.11999/JEIT221046.
    [15] HUANG Yang, CHEN Honglong, MA Guoqi, et al. OPAT: Optimized allocation of time-dependent tasks for mobile crowdsensing[J]. IEEE Transactions on Industrial Informatics, 2022, 18(4): 2476–2485. doi: 10.1109/TII.2021.3094527.
    [16] LIU Jiaxu, ZHU Haogang, and CHEN Xiao. Complicated-skills-based task assignment in spatial crowdsourcing[C]. WAIM 2016 International Workshops on Web-Age Information Management, Nanchang, China, 2016: 211–223. doi: 10.1007/978-3-319-47121-1_18.
    [17] TAO Xi and HAFID A S. DeepSensing: A novel mobile crowdsensing framework with double deep Q-network and prioritized experience replay[J]. IEEE Internet of Things Journal, 2020, 7(12): 11547–11558. doi: 10.1109/JIOT.2020.3022611.
    [18] SONG Tianshu, XU Ke, LI Jiangneng, et al. Multi-skill aware task assignment in real-time spatial crowdsourcing[J]. Geoinformatica, 2020, 24(1): 153–173. doi: 10.1007/s10707-019-00351-4.
    [19] HAN Lei, YU Zhiwen, YU Zhiyong, et al. Online organizing large-scale heterogeneous tasks and multi-skilled participants in mobile crowdsensing[J]. IEEE Transactions on Mobile Computing, 2023, 22(5): 2892–2909. doi: 10.1109/tmc.2021.3132616.
    [20] HONG Yingcong, LI Junyi, LIN Yaping, et al. Trajectory-aware privacy-preserving method with local differential privacy in crowdsourcing[J]. EURASIP Journal on Information Security, 2024, 2024(1): 28. doi: 10.1186/s13635-024-00177-0.
    [21] WEI Jianhao, LIN Yaping, YAO Xin, et al. Differential privacy-based location protection in spatial crowdsourcing[J]. IEEE Transactions on Services Computing, 2022, 15(1): 45–58. doi: 10.1109/TSC.2019.2920643.
    [22] WANG Leye, YANG Dingqi, HAN Xiao, et al. Mobile crowdsourcing task allocation with differential-and-distortion geo-obfuscation[J]. IEEE Transactions on Dependable and Secure Computing, 2021, 18(2): 967–981. doi: 10.1109/TDSC.2019.2912886.
    [23] BÉZIAUD L, ALLARD T, GROSS-AMBLARD D, et al. Lightweight privacy-preserving task assignment in skill-aware crowdsourcing[C]. 28th International Conference on Database and Expert Systems Applications, Lyon, France, 2017: 18–26. doi: 10.1007/978-3-319-64471-4_2.
    [24] VAZIRANI V V. Approximation Algorithms[M]. Berlin: Springer, 2003: 1–380. doi: 10.1007/978-3-662-04565-7.
    [25] YANG Dingqi, ZHANG Daqing, ZHENG V W, et al. Modeling user activity preference by leveraging user spatial temporal characteristics in LBSNs[J]. IEEE Transactions on Systems, Man, and Cybernetics: Systems, 2015, 45(1): 129–142. doi: 10.1109/tsmc.2014.2327053.
    [26] FAROOQ Umar and MAHEEN Barira. Skill-based task assignment[EB/OL]. https://www.kaggle.com/datasets/umerfarooq09/skill-based-task-assignment/data, 2024. (查阅网上资料,未找到本条文献作者和年份,请确认).
  • 加载中
图(5) / 表(2)
计量
  • 文章访问数:  16
  • HTML全文浏览量:  10
  • PDF下载量:  1
  • 被引次数: 0
出版历程
  • 收稿日期:  2025-05-15
  • 修回日期:  2025-09-16
  • 网络出版日期:  2025-09-23

目录

    /

    返回文章
    返回