高级搜索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

加密流量智能化分析技术:现状、进展与挑战

龚碧 刘建 唐小妹 于美婷 龚航 黄美根

龚碧, 刘建, 唐小妹, 于美婷, 龚航, 黄美根. 加密流量智能化分析技术:现状、进展与挑战[J]. 电子与信息学报. doi: 10.11999/JEIT250416
引用本文: 龚碧, 刘建, 唐小妹, 于美婷, 龚航, 黄美根. 加密流量智能化分析技术:现状、进展与挑战[J]. 电子与信息学报. doi: 10.11999/JEIT250416
GONG Bi, LIU Jian, TANG Xiaomei, YU Meiting, GONG Hang, HUANG Meigen. Intelligent Analysis Technologies for Encrypted Traffic: Current Status, Advances, and Challenges[J]. Journal of Electronics & Information Technology. doi: 10.11999/JEIT250416
Citation: GONG Bi, LIU Jian, TANG Xiaomei, YU Meiting, GONG Hang, HUANG Meigen. Intelligent Analysis Technologies for Encrypted Traffic: Current Status, Advances, and Challenges[J]. Journal of Electronics & Information Technology. doi: 10.11999/JEIT250416

加密流量智能化分析技术:现状、进展与挑战

doi: 10.11999/JEIT250416 cstr: 32379.14.JEIT250416
详细信息
    作者简介:

    龚碧:男,助理研究员,研究方向为密码与信息安全、网络空间安全

    刘建:男,副教授,研究方向为密码与电子信息系统安全

    唐小妹:女,研究员,研究方向为空天网络安全

    于美婷:女,副教授,研究方向为导航信号安全

    龚航:男,研究员,研究方向为导航信号安全

    黄美根:男,讲师,研究方向为大数据安全

    通讯作者:

    刘建 1240533070@qq.com

  • 中图分类号: TP393.08; TN918

Intelligent Analysis Technologies for Encrypted Traffic: Current Status, Advances, and Challenges

  • 摘要: 加密流量分析是保障网络安全的关键技术之一,该文系统探讨了其核心应用与主流技术。特征工程基于统计和行为特征刻画流量模式,深度学习则采用卷积神经网络、循环神经网络与图神经网络等架构自动提取深层特征,例如,改进的多尺度卷积神经网络在ISCXVPN2016数据集上的分类准确率达到86.77%。Transformer凭借其强大的特征捕捉能力,进一步推动了该领域发展,如融合掩码自动编码器的流量Transformer方法在相同数据集上的分类准确率达98.07%。此外,联邦学习在保护隐私的同时实现对流量的高精度分类,已有案例验证,其模型精度与集中式学习相比,差距可缩小至0.8%。多模态特征融合技术通过综合流量异构特征提升模型效能,成功将多分类任务的准确率与F1分数分别提升至93.75%和91.95%。生成式模型则有效解决数据稀缺问题,如基于扩散模型方法所生成的流量在包大小和间隔等关键特征上,与真实流量的相似度相较基线模型提升达到43.4%和39.02%。文章最后总结了当前挑战,并展望了未来方向。
  • 图  1  基于CNN的加密流量分析架构

    图  2  基于RNN的加密流量分析架构

    图  3  基于GNN的加密流量分析架构

    图  4  基于Transformer的加密流量分析架构

    图  5  基于联邦学习范式的加密流量分析架构

    图  6  基于多模态特征融合的加密流量分析架构

    图  7  GAN生成模拟流量原理

    图  8  DM生成模拟流量原理

    表  1  各种分析方法对比总结

    方法 核心关键技术 适用性与创新点 挑战与不足
    基于统计
    特征
    提取加密流量的统计特征(如数据包大小、时间间隔、流量速率等)进行分析 简单高效,适用于实时分析;
    能够捕捉流量的全局统计特性
    依赖人工特征,难以适应复杂变化;
    对新型攻击适应性不足;特征提取过程
    易丢失时序与上下文信息
    基于行为
    特征
    对用户或应用的行为模式(如访问频率、通信模式、流量突发性等)进行分析 能够检测未知攻击,适用于APT检测 需大量历史数据建立基线;对变化敏感,可能导致误报;难以区分正常行为
    与伪装的恶意流量
    基于CNN 利用CNN从加密流量的原始数据(如字节序列或图像化表示)中自动提取局部特征 能够自动学习特征,减少对人工设计的依赖;在流量分类和异常检测中表现优异 对时序特征的捕捉能力有限;需要大量标注数据进行训练;模型的可解释性较差
    基于RNN 利用RNN及变体(如LSTM、GRU)捕捉流量时序特征,适用于分析时间依赖关系 能够有效处理流量的时序信息,
    适用于检测长时间跨度的攻击行为
    训练过程计算复杂度高,难以处理大规模数据;对长距离依赖的捕捉能力有限;容易过拟合,泛化性较差
    基于GNN 利用GNN对网络流量中的拓扑结构进行
    建模,捕捉节点(如IP地址、设备)
    之间的关系
    能够分析网络流量的全局结构特征,
    适用于检测分布式攻击
    对大规模网络的计算开销较大;需要高质量的图结构数据;模型训练和推理
    效率较低
    基于Transformer 利用Transformer的自注意力机制捕捉加密流量的全局上下文依赖关系 能够处理长序列数据,适用于复杂
    加密流量的分类和异常检测
    计算复杂度高,对硬件资源要求较高;需大量标注数据训练;对局部特征捕捉能力有限;自注意力机制对短序列流量存在冗余计算问题
    联邦学习
    范式
    通过分布式设备在本地训练模型,
    并聚合模型参数以实现全局优化,
    同时保护数据隐私
    支持隐私保护的分布式学习,
    适用于多节点协同分析
    通信开销较大,影响效率;对非独立同分布数据的适应性较差;需解决模型聚合中的安全性和一致性问题
    多模态特征
    融合
    整合网络流量、DNS日志、用户行为
    等多源数据,通过多模态融合技术
    提升分析的全面性
    能够从多维度捕捉加密流量的特征,
    提高分析的准确性和鲁棒性
    数据异构性导致特征对齐和融合难度较大;对计算资源和存储资源的需求较高
    基于GAN 利用生成器生成模拟加密流量,判别器区分真假流量,通过对抗训练学习流量
    分布与特征
    解决数据标注难、类不平衡问题;适用于异常检测、数据增强与未知模式探索 训练不稳定,易模式崩溃;对超参数敏感,需大量计算资源;生成流量
    细粒度特征与真实流量有差异
    基于DM 通过正向扩散加噪、反向扩散去噪,生成与真实数据分布一致的样本 对罕见或新型异常检测效果好;
    有融合多模态加密流量数据的潜力
    迭代多、计算成本高、耗时久;
    对超参数敏感,难以快速收敛
    下载: 导出CSV
  • [1] XU Junfeng, LIN Weiguo, and FAN Wenqing. APT encrypted traffic detection method based on two-parties and multi-session for IoT[EB/OL]. http://arxiv.org/abs/2302.13234, 2023.
    [2] YI Tao, CHEN Xingshu, LI Qindong, et al. An anomaly behavior characterization method of network traffic based on Spatial Pyramid Pool (SPP)[J]. Computers & Security, 2024, 141: 103809. doi: 10.1016/j.cose.2024.103809.
    [3] ALMUHAMMADI S, ALNAJIM A, and AYUB M. QUIC network traffic classification using ensemble machine learning techniques[J]. Applied Sciences, 2023, 13(8): 4725. doi: 10.3390/app13084725.
    [4] LUXEMBURK J, HYNEK K, ČEJKA T, et al. CESNET-QUIC22: A large one-month QUIC network traffic dataset from backbone lines[J]. Data in Brief, 2023, 46: 108888. doi: 10.1016/j.dib.2023.108888.
    [5] ZUO Ming, GUO Changyong, XU Haiyan, et al. METC: A hybrid deep learning framework for cross-network encrypted DNS over HTTPS traffic detection and tunnel identification[J]. Information Fusion, 2025, 121: 103125. doi: 10.1016/j.inffus.2025.103125.
    [6] JUNG W K and KWAK B I. MTL-DoHTA: Multi-task learning-based DNS over HTTPS traffic analysis for enhanced network security[J]. Sensors, 2025, 25(4): 993. doi: 10.3390/s25040993.
    [7] ALZIGHAIBI A R. Detection of DoH traffic tunnels using deep learning for encrypted traffic classification[J]. Computers, 2023, 12(3): 47. doi: 10.3390/computers12030047.
    [8] AFZAL A, HUSSAIN M, SALEEM S, et al. Encrypted network traffic analysis of secure instant messaging application: A case study of signal messenger app[J]. Applied Sciences, 2021, 11(17): 7789. doi: 10.3390/app11177789.
    [9] ALSERHANI F. Analysis of encrypted network traffic for enhancing cyber-security in dynamic environments[J]. Applied Artificial Intelligence, 2024, 38(1): 2381882. doi: 10.1080/08839514.2024.2381882.
    [10] DONG Wenqi, YU Jing, LIN Xinjie, et al. Deep learning and pre-training technology for encrypted traffic classification: A comprehensive review[J]. Neurocomputing, 2025, 617: 128444. doi: 10.1016/j.neucom.2024.128444.
    [11] MILLER K M, LUKIC K, and SKIERA B. The impact of the General Data Protection Regulation (GDPR) on online tracking[J]. International Journal of Research in Marketing, 2025: S0167811625000229. doi: 10.1016/j.ijresmar.2025.03.002.(查阅网上资料,未找到卷期页码信息,请确认补充).
    [12] OCELÍK V, KOLK A, and IRION K. Shifting battlegrounds: Corporate political activity in the general data protection regulation[J]. Academy of Management Proceedings, 2023, 2023(1): 11059. doi: 10.5465/AMPROC.2023.208bp.(查阅网上资料,页码信息不确定,请确认).
    [13] SCHÄGE S. TOPAS2-pass key exchange with full perfect forward secrecy and optimal communication complexity[J]. Designs, Codes and Cryptography, 2024, 92(10): 3085–3124. doi: 10.1007/s10623-024-01429-3.
    [14] LEE C D and CHEN T H. New secure and practical E-mail protocol with perfect forward secrecy[J]. Symmetry, 2021, 13(7): 1144. doi: 10.3390/sym13071144.
    [15] FAN Qing, CHEN Jianhua, SHOJAFAR M, et al. SAKE*: A symmetric authenticated key exchange protocol with perfect forward secrecy for industrial internet of things[J]. IEEE Transactions on Industrial Informatics, 2022, 18(9): 6424–6434. doi: 10.1109/TII.2022.3145584.
    [16] CHEN Fangjie, BAI Jingpeng, and GAO Weihan. Research on encrypted traffic detection based on key features[J]. IEEE Access, 2024, 12: 1786–1793. doi: 10.1109/ACCESS.2023.3347806.
    [17] SHEKHAWAT A S, DI TROIA F, and STAMP M. Feature analysis of encrypted malicious traffic[J]. Expert Systems with Applications: An International Journal, 2019, 125(C): 130–141. doi: 10.1016/j.eswa.2019.01.064.
    [18] ZHENG Xianchun and LI Hui. Identification of malicious encrypted traffic through feature fusion[J]. IEEE Access, 2023, 11: 80072–80080. doi: 10.1109/ACCESS.2023.3279120.
    [19] PATHMAPERUMA M H, RAHULAMATHAVAN Y, DOGAN S, et al. Deep learning for encrypted traffic classification and unknown data detection[J]. Sensors, 2022, 22(19): 7643. doi: 10.3390/s22197643.
    [20] WU Hao, ZHANG Xi, and YANG Jufeng. Deep learning-based encrypted network traffic classification and resource allocation in SDN[J]. Journal of Web Engineering, 2021, 20(8): 2319–2334. doi: 10.13052/jwe1540-9589.2085.
    [21] CHEN Xuyang, HAN Lu, ZHAN Dechuan, et al. MIETT: Multi-instance encrypted traffic transformer for encrypted traffic classification[C]. Proceedings of the 39th AAAI Conference on Artificial Intelligence, Philadelphia, USA, 2025: 15922–15929. doi: 10.1609/aaai.v39i15.33748.
    [22] ZHAN Mingming, YANG Jin, JIA Dongqing, et al. EAPT: An encrypted traffic classification model via adversarial pre-trained transformers[J]. Computer Networks, 2025, 257: 110973. doi: 10.1016/j.comnet.2024.110973.
    [23] WANG Zixuan, MIAO Cheng, XU Yuhua, et al. Trusted encrypted traffic intrusion detection method based on federated learning and autoencoder[J]. China Communications, 2024, 21(8): 211–235. doi: 10.23919/JCC.ja.2022-0392.
    [24] LIU Wei, CUI Wentao, SHE Wei, et al. Encrypted network traffic detection based on Blockchain and federated learning[C]. 2024 4th International Conference on Blockchain Technology and Information Security (ICBCTIS), Wuhan, China, 2024: 139–144. doi: 10.1109/ICBCTIS64495.2024.00030.
    [25] ZENG Yong, WANG Zhe, GUO Xiaoya, et al. Social networks based robust federated learning for encrypted traffic classification[C]. ICC 2023 - IEEE International Conference on Communications, Rome, Italy, 2023: 4937–4942. doi: 10.1109/ICC45041.2023.10279778.
    [26] WANG Xiangbin, YUAN Qingjun, WANG Yongjuan, et al. Combine intra- and inter-flow: A multimodal encrypted traffic classification model driven by diverse features[J]. Computer Networks, 2024, 245: 110403. doi: 10.1016/j.comnet.2024.110403.
    [27] LIU Ming, YANG Qichao, WANG Wenqing, et al. Semi-supervised encrypted malicious traffic detection based on multimodal traffic characteristics[J]. Sensors, 2024, 24(20): 6507. doi: 10.3390/s24206507.
    [28] DAI Jianbang, XU Xiaolong, and XIAO Fu. GLADS: A global-local attention data selection model for multimodal multitask encrypted traffic classification of IoT[J]. Computer Networks, 2023, 225: 109652. doi: 10.1016/j.comnet.2023.109652.
    [29] MENG Xuying, LIN Chungang, WANG Yequan, et al. NetGPT: Generative pretrained transformer for network traffic[EB/OL]. http://arxiv.org/abs/2304.09513, 2023.
    [30] ACETO G, CIUONZO D, MONTIERI A, et al. MIMETIC: Mobile encrypted traffic classification using multimodal deep learning[J]. Computer Networks, 2019, 165: 106944. doi: 10.1016/j.comnet.2019.106944.
    [31] WANG Tongze, XIE Xiaohui, WANG Wenduo, et al. NetMamba: Efficient network traffic classification via pre-training unidirectional mamba[C]. 2024 IEEE 32nd International Conference on Network Protocols (ICNP), Charleroi, Belgium, 2024: 1-11. doi: 10.1109/ICNP61940.2024.10858569.
    [32] 付钰, 刘涛涛, 王坤, 等. 基于机器学习的加密流量分类研究综述[J]. 通信学报, 2025, 46(1): 167–191. doi: 10.11959/j.issn.1000-436x.2025006.

    FU Yu, LIU Taotao, WANG Kun, et al. Survey of research on encrypted traffic classification based on machine learning[J]. Journal on Communications, 2025, 46(1): 167–191. doi: 10.11959/j.issn.1000-436x.2025006.
    [33] VU L, VAN TRA D, and NGUYEN Q U. Learning from imbalanced data for encrypted traffic identification problem[C]. Proceedings of the Seventh Symposium on Information and Communication Technology, Ho Chi Minh City, Vietnam, 2016: 147–152. doi: 10.1145/3011077.3011132.
    [34] VAN EDE T, BORTOLAMEOTTI R, CONTINELLA A, et al. FlowPrint: Semi-supervised mobile-app fingerprinting on encrypted network traffic[C]. Proceedings 2020 Network and Distributed System Security Symposium, San Diego, USA, 2020. doi: 10.14722/ndss.2020.24412.
    [35] REZAEI S and LIU Xin. Deep learning for encrypted traffic classification: An overview[J]. IEEE Communications Magazine, 2019, 57(5): 76–81. doi: 10.1109/MCOM.2019.1800819.
    [36] PARK J T, SHIN C Y, BAEK U J, et al. User behavior detection using multi-modal signatures of encrypted network traffic[J]. IEEE Access, 2023, 11: 97353–97372. doi: 10.1109/ACCESS.2023.3311889.
    [37] SUBAHI A and THEODORAKOPOULOS G. Detecting IoT user behavior and sensitive information in encrypted IoT-app traffic[J]. Sensors, 2019, 19(21): 4777. doi: 10.3390/s19214777.
    [38] WANG Jibao, CAO Zigang, KANG Cuicui, et al. User behavior classification in encrypted cloud camera traffic[C]. 2019 IEEE Global Communications Conference (GLOBECOM), Waikoloa, USA, 2019: 1–6. doi: 10.1109/GLOBECOM38437.2019.9013558.
    [39] CONTI M, MANCINI L V, SPOLAOR R, et al. Analyzing android encrypted network traffic to identify user actions[J]. IEEE Transactions on Information Forensics and Security, 2016, 11(1): 114–125. doi: 10.1109/TIFS.2015.2478741.
    [40] ZHAI Liang, ZHENG Qiuhua, ZHANG Xu, et al. Identification of private ICS protocols based on raw traffic[J]. Symmetry, 2021, 13(9): 1743. doi: 10.3390/sym13091743.
    [41] MA Ruolong and QIN Sujuan. Identification of unknown protocol traffic based on deep learning[C]. 2017 3rd IEEE International Conference on Computer and Communications (ICCC), Chengdu, China, 2017: 1195–1198. doi: 10.1109/CompComm.2017.8322732.
    [42] 顾伟, 行鸿彦, 侯天浩. 基于网络流量时空特征和自适应加权系数的异常流量检测方法[J]. 电子与信息学报, 2024, 46(6): 2647–2654. doi: 10.11999/JEIT230825.

    GU Wei, XING Hongyan, and HOU Tianhao. Abnormal traffic detection method based on traffic spatial-temporal features and adaptive weighting coefficients[J]. Journal of Electronics & Information Technology, 2024, 46(6): 2647–2654. doi: 10.11999/JEIT230825.
    [43] IKRAM S T and CHERUKURI A K. Improving accuracy of intrusion detection model using PCA and optimized SVM[J]. CIT. Journal of Computing and Information Technology, 2016, 24(2): 133–148. doi: 10.20532/cit.2016.1002701.
    [44] KOCH R, GOLLING M, and RODOSEK G D. Behavior-based intrusion detection in encrypted environments[J]. IEEE Communications Magazine, 2014, 52(7): 124–131. doi: 10.1109/MCOM.2014.6852093.
    [45] FU Chuanpu, LI Qi, and XU Ke. Detecting unknown encrypted malicious traffic in real time via flow interaction graph analysis[C]. Proceedings 2023 Network and Distributed System Security Symposium, San Diego, USA, 2023. doi: 10.14722/ndss.2023.23080.
    [46] FU Chuanpu, LI Qi, SHEN Meng, et al. Frequency domain feature based robust malicious traffic detection[J]. IEEE/ACM Transactions on Networking, 2023, 31(1): 452–467. doi: 10.1109/TNET.2022.3195871.
    [47] MIAO Gongxun, WU Guohua, ZHANG Zhen, et al. Boosting encrypted traffic classification using feature-enhanced recurrent neural network with angle constraint[J]. IEEE Transactions on Big Data, 2025, 11(4): 1760–1771. doi: 10.1109/TBDATA.2024.3484674.
    [48] OEUNG P and SHEN Fuke. Imbalanced internet traffic classification using ensemble framework[C]. 2019 International Conference on Information Networking (ICOIN), Kuala Lumpur, Malaysia, 2019: 37–42. doi: 10.1109/ICOIN.2019.8717977.
    [49] QING Yuqi, YIN Qilei, DENG Xinhao, et al. Low-quality training data only? A robust framework for detecting encrypted malicious network traffic[C]. Proceedings 2024 Network and Distributed System Security Symposium, San Diego, USA, 2024. doi: 10.14722/ndss.2024.23081.
    [50] HE Hongye, YANG Zhiguo, and CHEN Xiangning. PERT: Payload encoding representation from transformer for encrypted traffic classification[C]. 2020 ITU Kaleidoscope: Industry-Driven Digital Transformation (ITU K), Ha Noi, Vietnam, 2020: 1–8. doi: 10.23919/ITUK50268.2020.9303204.
    [51] FU Chuanpu, LI Qi, XU Ke, et al. Point cloud analysis for ML-based malicious traffic detection: Reducing majorities of false positive alarms[C]. Proceedings of the 2023 ACM SIGSAC Conference on Computer and Communications Security, Copenhagen, Denmark, 2023: 1005–1019. doi: 10.1145/3576915.3616631.
    [52] ZHOU Guangmeng, GUO Xiongwen, LIU Zhuotao, et al. TrafficFormer: An efficient pre-trained model for traffic data[C]. 2025 IEEE Symposium on Security and Privacy (SP), San Francisco, USA, 2025: 1844–1860. doi: 10.1109/SP61157.2025.00102.
    [53] CUI Susu, HAN Xueying, DONG Cong, et al. MVDet: Encrypted malware traffic detection via multi-view analysis[J]. Journal of Computer Security, 2024, 32(6): 533–555. doi: 10.3233/JCS-230024.
    [54] OH C, HA J, and ROH H. A survey on TLS-encrypted malware network traffic analysis applicable to security operations centers[J]. Applied Sciences, 2021, 12(1): 155. doi: 10.3390/app12010155.
    [55] CUI Susu, DONG Cong, SHEN Meng, et al. CBSeq: A channel-level behavior sequence for encrypted malware traffic detection[J]. IEEE Transactions on Information Forensics and Security, 2023, 18: 5011–5025. doi: 10.1109/TIFS.2023.3300521.
    [56] SHAPIRA T and SHAVITT Y. FlowPic: A generic representation for encrypted traffic classification and applications identification[J]. IEEE Transactions on Network and Service Management, 2021, 18(2): 1218–1232. doi: 10.1109/TNSM.2021.3071441.
    [57] HOROWICZ E, SHAPIRA T, and SHAVITT Y. A few shots traffic classification with mini-FlowPic augmentations[C]. Proceedings of the 22nd ACM Internet Measurement Conference, Nice, France, 2022: 647–654. doi: 10.1145/3517745.3561436.
    [58] HOROWICZ E, SHAPIRA T, and SHAVITT Y. Self-supervised traffic classification: Flow embedding and few-shot solutions[J]. IEEE Transactions on Network and Service Management, 2024, 21(3): 3054–3067. doi: 10.1109/TNSM.2024.3366848.
    [59] WANG Wei, ZHU Ming, ZENG Xuewen, et al. Malware traffic classification using convolutional neural network for representation learning[C]. 2017 International Conference on Information Networking (ICOIN), Da Nang, Vietnam, 2017: 712–717. doi: 10.1109/ICOIN.2017.7899588.
    [60] HOLASOVA E, BLAZEK P, FUJDIAK R, et al. Exploring the power of convolutional neural networks for encrypted industrial protocols recognition[J]. Sustainable Energy, Grids and Networks, 2024, 38: 101269. doi: 10.1016/j.segan.2023.101269.
    [61] PENG Quan, FU Xingbing, LIN Fei, et al. Multi-scale convolutional neural networks optimized by elite strategy dung beetle optimization algorithm for encrypted traffic classification[J]. Expert Systems with Applications, 2025, 264: 125729. doi: 10.1016/j.eswa.2024.125729.
    [62] YU Lancan, YUAN Jianting, ZHENG Jin, et al. A model of encrypted network traffic classification that trades off accuracy and efficiency[J]. Journal of Network and Systems Management, 2025, 33(1): 11. doi: 10.1007/s10922-024-09892-y.
    [63] ABBAS S, ALSUBAI S, OJO S, et al. An efficient deep recurrent neural network for detection of cyberattacks in realistic IoT environment[J]. The Journal of Supercomputing, 2024, 80(10): 13557–13575. doi: 10.1007/s11227-024-05993-2.
    [64] SONG Zhuoxue, ZHAO Ziming, ZHANG Fan, et al. I2RNN: An incremental and interpretable recurrent neural network for encrypted traffic classification[J]. IEEE Transactions on Dependable and Secure Computing, 2024: 1–14. doi: 10.1109/TDSC.2023.3245411.(查阅网上资料,未找到卷期页码信息,请确认补充).
    [65] REN Xinming, GU Huaxi, and WEI Wenting. Tree-RNN: Tree structural recurrent neural network for network traffic classification[J]. Expert Systems with Applications, 2021, 167: 114363. doi: 10.1016/j.eswa.2020.114363.
    [66] HUOH T L, LUO Yan, LI Peilong, et al. Flow-based encrypted network traffic classification with graph neural networks[J]. IEEE Transactions on Network and Service Management, 2023, 20(2): 1224–1237. doi: 10.1109/TNSM.2022.3227500.
    [67] HAN Xinbo, XU Guizhong, ZHANG Meng, et al. DE-GNN: Dual embedding with graph neural network for fine-grained encrypted traffic classification[J]. Computer Networks, 2024, 245: 110372. doi: 10.1016/j.comnet.2024.110372.
    [68] SHEN Meng, ZHANG Jinpeng, ZHU Liehuang, et al. Accurate decentralized application identification via encrypted traffic analysis using graph neural networks[J]. IEEE Transactions on Information Forensics and Security, 2021, 16: 2367–2380. doi: 10.1109/TIFS.2021.3050608.
    [69] JUNG I S, SONG Y R, JILCHA L A, et al. Enhanced encrypted traffic analysis leveraging graph neural networks and optimized feature dimensionality reduction[J]. Symmetry, 2024, 16(6): 733. doi: 10.3390/sym16060733.
    [70] LI Zhiyuan, ZHAO Hongyi, ZHAO Jingyu, et al. SAT-Net: A staggered attention network using graph neural networks for encrypted traffic classification[J]. Journal of Network and Computer Applications, 2025, 233: 104069. doi: 10.1016/j.jnca.2024.104069.
    [71] LIN Xinjie, XIONG Gang, GOU Gaopeng, et al. ET-BERT: A contextualized datagram representation with pre-training transformers for encrypted traffic classification[C]. Proceedings of the ACM Web Conference 2022, Lyon, France, 2022: 633–642. doi: 10.1145/3485447.3512217.
    [72] HANG Zijun, LU Yuliang, WANG Yongjie, et al. Flow-MAE: Leveraging masked AutoEncoder for accurate, efficient and robust malicious traffic classification[C]. Proceedings of the 26th International Symposium on Research in Attacks, Intrusions and Defenses, Hong Kong, China, 2023: 297–314. doi: 10.1145/3607199.3607206.
    [73] ZHAO Ruijie, ZHAN Mingwei, DENG Xianwen, et al. Yet another traffic classifier: A masked Autoencoder based traffic transformer with multi-level flow representation[C]. Proceedings of the 37th AAAI Conference on Artificial Intelligence, Washington, USA, 2023: 5420–5427. doi: 10.1609/aaai.v37i4.25674.
    [74] FEDORCHENKO E, NOVIKOVA E, and SHULEPOV A. Comparative review of the intrusion detection systems based on federated learning: Advantages and open challenges[J]. Algorithms, 2022, 15(7): 247. doi: 10.3390/a15070247.
    [75] SANON S P, REDDY R, LIPPS C, et al. Secure federated learning: An evaluation of homomorphic encrypted network traffic prediction[C]. 2023 IEEE 20th Consumer Communications & Networking Conference (CCNC), Las Vegas, USA, 2023: 1–6. doi: 10.1109/CCNC51644.2023.10060116.
    [76] MARCILLO P, SUNTAXI G, and HERNÁNDEZ-ÁLVAREZ M. A privacy-preserving scheme for a traffic accident risk level prediction system[J]. Applied Sciences, 2024, 14(21): 9876. doi: 10.3390/app14219876.
    [77] NOVIKOVA E, DOYNIKOVA E, and GOLUBEV S. Federated learning for intrusion detection in the critical infrastructures: Vertically partitioned data use case[J]. Algorithms, 2022, 15(4): 104. doi: 10.3390/a15040104.
    [78] JIN Zhiping, DUAN Ke, CHEN Changhui, et al. FedETC: Encrypted traffic classification based on federated learning[J]. Heliyon, 2024, 10(16): e35962. doi: 10.1016/j.heliyon.2024.e35962.
    [79] YIN Ziwei, LI Kun, and BI Hongjun. Trusted multi-domain DDoS detection based on federated learning[J]. Sensors, 2022, 22(20): 7753. doi: 10.3390/s22207753.
    [80] LIN Peng, YE Kejiang, HU Yishen, et al. A novel multimodal deep learning framework for encrypted traffic classification[J]. IEEE/ACM Transactions on Networking, 2023, 31(3): 1369–1384. doi: 10.1109/TNET.2022.3215507.
    [81] ACETO G, CIUONZO D, MONTIERI A, et al. DISTILLER: Encrypted traffic classification via multimodal multitask deep learning[J]. Journal of Network and Computer Applications, 2021, 183/184: 102985. doi: 10.1016/j.jnca.2021.102985.
    [82] GOODFELLOW I, POUGET-ABADIE J, MIRZA M, et al. Generative adversarial networks[J]. Communications of the ACM, 2020, 63(11): 139–144. doi: 10.1145/3422622.
    [83] YUAN Xinyu, QIAO Yan, WEI Zhenchun, et al. Diffusion models meet network management: Improving traffic matrix analysis with diffusion-based approach[J]. IEEE Transactions on Network and Service Management, 2025, 22(2): 1259–1275. doi: 10.1109/TNSM.2025.3527442.
    [84] YANG Ling, ZHANG Zhilong, SONG Yang, et al. Diffusion models: A comprehensive survey of methods and applications[J]. ACM Computing Surveys, 2023, 56(4): 105. doi: 10.1145/3626235.
    [85] WANG Pan, WANG Zixuan, YE Feng, et al. ByteSGAN: A semi-supervised generative adversarial network for encrypted traffic classification in SDN edge gateway[J]. Computer Networks, 2021, 200: 108535. doi: 10.1016/j.comnet.2021.108535.
    [86] ILIYASU A S and DENG Huifang. Semi-supervised encrypted traffic classification with deep convolutional generative adversarial networks[J]. IEEE Access, 2020, 8: 118–126. doi: 10.1109/ACCESS.2019.2962106.
    [87] MAO Jiaming, ZHANG Mingming, CHEN Mu, et al. Semisupervised encrypted traffic identification based on auxiliary classification generative adversarial network[J]. Computer Systems Science and Engineering, 2021, 39(3): 373–390. doi: 10.32604/csse.2021.018086.
    [88] SIVAROOPAN N, BANDARA D, MADARASINGHA C, et al. NetDiffus: Network traffic generation by diffusion models through time-series imaging[J]. Computer Networks, 2024, 251: 110616. doi: 10.1016/j.comnet.2024.110616.
    [89] ZHANG Shiyuan, CHAI Haoye, LI Yong, et al. PacketDiff: A flow guided diffusion model for network packet trace generation[J]. IEEE Internet of Things Journal, 2025, 12(18): 38804–38819. doi: 10.1109/JIOT.2025.3587658.
    [90] JIANG Xi, LIU Shinan, GEMBER-JACOBSON A, et al. NetDiffusion: Network data augmentation through protocol-constrained traffic generation[J]. Proceedings of the ACM on Measurement and Analysis of Computing Systems, 2024, 8(1): 11. doi: 10.1145/3639037.
    [91] HAYDEN B, WALSH T, and BARTON A. Defending against deep learning-based traffic fingerprinting attacks with adversarial examples[J]. ACM Transactions on Privacy and Security, 2025, 28(1): 1. doi: 10.1145/3698591.
    [92] ABOLFATHI M, INTURI S, BANAEI-KASHANI F, et al. Toward enhancing web privacy on HTTPS traffic: A novel SuperLearner attack model and an efficient defense approach with adversarial examples[J]. Computers & Security, 2024, 139: 103673. doi: 10.1016/j.cose.2023.103673.
  • 加载中
图(8) / 表(1)
计量
  • 文章访问数:  9
  • HTML全文浏览量:  6
  • PDF下载量:  1
  • 被引次数: 0
出版历程
  • 修回日期:  2026-01-16
  • 录用日期:  2026-01-16
  • 网络出版日期:  2026-01-27

目录

    /

    返回文章
    返回