高级搜索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

随机计算应用与挑战概述

陈璐 王强源 钟坤材 张吉良

陈璐, 王强源, 钟坤材, 张吉良. 随机计算应用与挑战概述[J]. 电子与信息学报. doi: 10.11999/JEIT250413
引用本文: 陈璐, 王强源, 钟坤材, 张吉良. 随机计算应用与挑战概述[J]. 电子与信息学报. doi: 10.11999/JEIT250413
CHEN Lu, WANG Jiang Yuan, ZHONG Kuncai, ZHANG Ji Liang. Overview of Stochastic Computing Applications and Challenges[J]. Journal of Electronics & Information Technology. doi: 10.11999/JEIT250413
Citation: CHEN Lu, WANG Jiang Yuan, ZHONG Kuncai, ZHANG Ji Liang. Overview of Stochastic Computing Applications and Challenges[J]. Journal of Electronics & Information Technology. doi: 10.11999/JEIT250413

随机计算应用与挑战概述

doi: 10.11999/JEIT250413 cstr: 32379.14.JEIT250413
基金项目: 国家自然科学基金(62122023),湖南省自然科学基金(2025JJ60433),长沙市自然科学基金(kq2402003)
详细信息
    作者简介:

    陈璐:女,硕士,研究方向为新型计算电路计算机辅助设计

    王强源:男,博士,研究方向为新型计算电路计算机辅助设计

    钟坤材:男,助理教授,研究方向为新型计算电路计算机辅助设计,高效安全可信根设计

    张吉良:男,教授,研究方向为集成电路设计与EDA相关领域

    通讯作者:

    张吉良 zhangjiliang@hnu.edu.cn

  • 中图分类号: TN43

Overview of Stochastic Computing Applications and Challenges

Funds: The National Natural Science Foundation of China (62122023), The Natural Science Foundation of Hunan Province (2025JJ60433), The Natural Science Foundation of Changsha City (kq2402003)
  • 摘要: 随机计算是一种以概率信号替代确定性二进制数值的新型计算范式,其核心在于将确定性数值映射为概率化比特数流,通过统计特性而非精确位权实现算术运算。相较于传统确定性数值计算,随机计算具有低硬件开销、高渐进精度与高容错性等优势,广泛应用于数字信号处理、神经网络加速及边缘计算。然而,该技术的发展面临三大关键挑战:序列长度制约的精度与效率权衡、概率转换电路的开销过高以及随机比特流相关性导致的误差累积。该文系统梳理了随机计算的发展脉络与基本原理,重点聚焦其在低功耗滤波、实时图像处理及容错神经网络中的典型应用与实现机制。同时,深入剖析了应对上述挑战的研究策略,包括随机比特流相关性的度量、抑制与反用技术,概率转换电路硬件开销的优化策略,以及动态渐进精度调节机制的最新进展与局限。该文旨在为研究者清晰呈现随机计算的技术现状、应用潜力及未来突破方向。
  • 图  1  随机计算架构

    图  2  相关性干扰

    图  3  随机乘法器与随机加法器

    图  4  1阶随机计算数字滤波器

    图  5  神经网络架构

    图  6  去相关化技术

    图  7  随机数生成器优化技术

    表  1  单极与双极格式

    格式 数值 数值范围 与单极值Px的关系
    单极 $ {N}^{1}/N $ [0,1] $ Px $
    双极 ($ {N}^{1}-{N}_{0} $)$ /N $ [–1,1] $ 2\mathrm{P}\mathrm{x}-1 $
    下载: 导出CSV
  • [1] BURKS A W, GOLDSTINE H H, and VON NEUMANN J. Preliminary discussion of the logical design of an electronic computing instrument[R]. Princeton, 1946. (查阅网上资料, 未找到出版信息, 请确认补充).
    [2] VON NEUMANN J. Probabilistic logics and the synthesis of reliable organisms from unreliable components[J]. Automata Studies, 1956, 34(34): 43–98. doi: 10.1515/9781400882618-003. (查阅网上资料,未找到本条文献卷期页码信息,请确认).
    [3] GAINES B R. Stochastic computing[C]. Proceedings of the April 18-20, 1967, Spring Joint Computer Conference, Atlantic City, USA, 1967: 149–156. doi: 10.1145/1465482.1465505.
    [4] GAINES B R. Stochastic computing systems[M]. TOU J T. Advances in Information Systems Science: Volume 2. New York: Springer, 1969: 37–172. doi: 10.1007/978-1-4899-5841-9_2.
    [5] POPPELBAUM W J, AFUSO C, and ESCH J W. Stochastic computing elements and systems[C]. Proceedings of the November 14-16, 1967, Fall Joint Computer Conference, Anaheim, USA, 1967: 635–644. doi: 10.1145/1465611.1465696.
    [6] XIU Liming. Time Moore: Exploiting Moore's law from the perspective of time[J]. IEEE Solid-State Circuits Magazine, 2019, 11(1): 39–55. doi: 10.1109/MSSC.2018.2882285.
    [7] POPPELBAUM W J. Statistical processors[J]. Advances in Computers, 1976, 14: 187–230. doi: 10.1016/S0065-2458(08)60452-0.
    [8] BROWN B D and CARD H C. Stochastic neural computation. I. Computational elements[J]. IEEE Transactions on Computers, 2001, 50(9): 891–905. doi: 10.1109/12.954505.
    [9] BROWN B D and CARD H C. Stochastic neural computation. II. Soft competitive learning[J]. IEEE Transactions on Computers, 2001, 50(9): 906–920. doi: 10.1109/12.954506.
    [10] TORAL S L, QUERO J M, and FRANQUELO L G. Stochastic pulse coded arithmetic[C]. 2000 IEEE International Symposium on Circuits and Systems (ISCAS), Geneva, Switzerland, 2000: 599–602. doi: 10.1109/ISCAS.2000.857166.
    [11] MARIN S L T, REBOUL J M Q, and FRANQUELO L G. Digital stochastic realization of complex analog controllers[J]. IEEE Transactions on Industrial Electronics, 2002, 49(5): 1101–1109. doi: 10.1109/TIE.2002.803233.
    [12] LIU Siting and HAN Jie. Dynamic stochastic computing for digital signal processing applications[C]. 2020 Design, Automation & Test in Europe Conference & Exhibition (DATE), Grenoble, France, 2020: 604–609. doi: 10.23919/DATE48585.2020.9116562.
    [13] ZHONG Kuncai, LI Zexi, JIN Haoran, et al. Exploiting uniform spatial distribution to design efficient random number source for stochastic computing[C]. 2022 IEEE/ACM International Conference on Computer Aided Design (ICCAD), San Diego, USA, 2022: 1–9.
    [14] CHENG Zezhi, QIN Yabo, WANG Zongwei, et al. A high-throughput and configurable TRNG based on dual-mode memristor for stochastic computing[C]. 2023 IEEE International Conference on Integrated Circuits, Technologies and Applications (ICTA), Hefei, China, 2023: 108–109. doi: 10.1109/ICTA60488.2023.10364295.
    [15] TEMENOS N, NTINAS V, SOTIRIADIS P P, et al. Time-based memristor crossbar array programming for stochastic computing parallel sequence generation[C]. 2023 IEEE International Symposium on Circuits and Systems (ISCAS), Monterey, USA, 2023: 1–5. doi: 10.1109/ISCAS46773.2023.10181967.
    [16] ROGERS E G, MUGDHO S S, GUPTE K K, et al. StoX-Net: Stochastic processing of partial sums for efficient in-memory computing DNN accelerators[C]. 2024 IEEE International Conference on Rebooting Computing (ICRC), San Diego, USA, 2024: 1–9. doi: 10.1109/ICRC64395.2024.10937005.
    [17] ZHOU Yi. Joint stochastic computation offloading and trajectory optimization for unmanned-aerial-vehicle-assisted mobile edge computing[J]. IEEE Access, 2025, 13: 2034–2044. doi: 10.1109/ACCESS.2024.3519598.
    [18] CHEN Yuhao, LI Hongge, SONG Yinjie, et al. Hybrid stochastic computing of linear time O(N) and its in-memory computing for high performances[C]. 2024 IEEE Computer Society Annual Symposium on VLSI (ISVLSI), Knoxville, USA, 2024: 753–756. doi: 10.1109/ISVLSI61997.2024.00146.
    [19] WANG Hai, FENG Yang, ZHAN Xuepeng, et al. Flash-based computing-in-memory (CiM) towards stochastic computing with low power-consumption and high noise-immunity[C]. 2024 IEEE Silicon Nanoelectronics Workshop (SNW), Honolulu, USA, 2024: 45–46. doi: 10.1109/SNW63608.2024.10639216.
    [20] HOQUE M M and KOVURI K. “Time and energy trade-offs for mobile edge computing: A comparative study of task offloading strategies”[C]. 2025 1st International Conference on AIML-Applications for Engineering & Technology (ICAET), Pune, India, 2025: 1–5. doi: 10.1109/ICAET63349.2025.10932256.
    [21] AGWA S and PRODROMAKIS T. Bent-pyramid: Towards a quasi-stochastic data representation for AI hardware[C]. 2023 21st IEEE Interregional NEWCAS Conference (NEWCAS), Edinburgh, United Kingdom, 2023: 1–5. doi: 10.1109/NEWCAS57931.2023.10198194.
    [22] ABDELFATTAH M A, AHMED H O, and ABDELGHANY M A. 16-Bit SABP: Quasi-stochastic data representation unit for AI hardware using FPGA[C]. 2024 IEEE 37th International System-on-Chip Conference (SOCC), Dresden, Germany, 2024: 1–6. doi: 10.1109/SOCC62300.2024.10737766.
    [23] SASMAL M, JOSEPH T, and T S B. Approximate multiplier design with LFSR-based stochastic sequence generators for edge AI[J]. IEEE Computer Architecture Letters, 2024, 23(1): 91–94. doi: 10.1109/LCA.2024.3379002. (查阅网上资料,不确定标黄作者信息是否正确,请确认).
    [24] ALAGHI A, QIAN Weikang, and HAYES J P. The promise and challenge of stochastic computing[J]. IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems, 2018, 37(8): 1515–1531. doi: 10.1109/TCAD.2017.2778107.
    [25] ALAGHI A and HAYES J P. Exploiting correlation in stochastic circuit design[C]. 2013 IEEE 31st International Conference on Computer Design (ICCD), Asheville, USA, 2013: 39–46. doi: 10.1109/ICCD.2013.6657023.
    [26] CHEN Hao and HAN Jie. Stochastic computational models for accurate reliability evaluation of logic circuits[C]. Proceedings of the 20th Symposium on Great Lakes Symposium on VLSI, Providence, USA, 2010: 61–66. doi: 10.1145/1785481.1785497.
    [27] ZHANG Da and LI Hui. A stochastic-based FPGA controller for an induction motor drive with integrated neural network algorithms[J]. IEEE Transactions on Industrial Electronics, 2008, 55(2): 551–561. doi: 10.1109/TIE.2007.911946.
    [28] CHANG Yunnan and PARHI K K. Architectures for digital filters using stochastic computing[C]. 2013 IEEE International Conference on Acoustics, Speech and Signal Processing, Vancouver, Canada, 2013: 2697–2701. doi: 10.1109/ICASSP.2013.6638146.
    [29] ALAWAD M and LIN Mingjie. FIR filter based on stochastic computing with reconfigurable digital fabric[C]. 2015 IEEE 23rd Annual International Symposium on Field-Programmable Custom Computing Machines, Vancouver, Canada, 2015: 92–95. doi: 10.1109/FCCM.2015.32.
    [30] ICHIHARA H, SUGINO T, ISHII S, et al. Compact and accurate digital filters based on stochastic computing[J]. IEEE Transactions on Emerging Topics in Computing, 2019, 7(1): 31–43. doi: 10.1109/TETC.2016.2608825.
    [31] ZHONG Kuncai, YANG Meng, and QIAN Weikang. Optimizing stochastic computing-based FIR filters[C]. 2018 IEEE 23rd International Conference on Digital Signal Processing (DSP), Shanghai, China, 2018: 1–5. doi: 10.1109/ICDSP.2018.8631799.
    [32] PAPACHATZOPOULOS K, ANDRIAKOPOULOS C, and PALIOURAS V. Novel noise-shaping stochastic-computing converters for digital filtering[C]. 2020 IEEE International Symposium on Circuits and Systems (ISCAS), Seville, Spain, 2020: 1–5. doi: 10.1109/ISCAS45731.2020.9180770.
    [33] VLACHOS A, TEMENOS N, and SOTIRIADIS P P. Exploring the effectiveness of sigma-delta modulators in stochastic computing-based FIR filtering[C]. 2021 10th International Conference on Modern Circuits and Systems Technologies (MOCAST), Thessaloniki, Greece, 2021: 1–4. doi: 10.1109/MOCAST52088.2021.9493368.
    [34] GIVAKI K, KHONSARI A, GHOLAMREZAEI M H, et al. Hardware efficient FIR filter architectures using accurate unary stochastic computing[C]. 2022 IEEE 40th International Conference on Computer Design (ICCD), Olympic Valley, USA, 2022: 754–761. doi: 10.1109/ICCD56317.2022.00115.
    [35] LIU Yin and PARHI K K. Architectures for stochastic normalized and modified lattice IIR filters[C]. 2015 49th Asilomar Conference on Signals, Systems and Computers, Pacific Grove, USA, 2015: 1351–1358. doi: 10.1109/ACSSC.2015.7421363.
    [36] LAVANYA M and RAVINDRA J. Performance metrics of imprecise multipliers based on proximate compressors for IIR filters[C]. 2018 30th International Conference on Microelectronics (ICM), Sousse, Tunisia, 2018: 96–99. doi: 10.1109/ICM.2018.8704044.
    [37] SENGUPTA R, POLIAN I, and HAYES J P. Performance and error tolerance of stochastic computing-based digital filter design[C]. 2024 27th International Symposium on Design & Diagnostics of Electronic Circuits & Systems (DDECS), Kielce, Poland, 2024: 7–12. doi: 10.1109/DDECS60919.2024.10508903.
    [38] ALAGHI A, LI Cheng, and HAYES J P. Stochastic circuits for real-time image-processing applications[C]. Proceedings of the 50th Annual Design Automation Conference, Austin, USA, 2013: 1–6. doi: 10.1145/2463209.2488901.
    [39] LI Peng, LILJA D J, QIAN Weikang, et al. Computation on stochastic bit streams digital image processing case studies[J]. IEEE Transactions on Very Large Scale Integration (VLSI) Systems, 2014, 22(3): 449–462. doi: 10.1109/TVLSI.2013.2247429.
    [40] NAJAFI M H and SALEHI M E. A fast fault-tolerant architecture for Sauvola local image thresholding algorithm using stochastic computing[J]. IEEE Transactions on Very Large Scale Integration (VLSI) Systems, 2016, 24(2): 808–812. doi: 10.1109/TVLSI.2015.2415932.
    [41] SAUVOLA J and PIETIKÄINEN M. Adaptive document image binarization[J]. Pattern Recognition, 2000, 33(2): 225–236. doi: 10.1016/S0031-3203(99)00055-2.
    [42] KAMISIAN I, MARSONO M N, PARAMAN N, et al. Characterization of early termination for stochastic computing image processing circuits[C]. 2024 IEEE 14th Symposium on Computer Applications & Industrial Electronics (ISCAIE), Penang, Malaysia, 2024: 395–400. doi: 10.1109/ISCAIE61308.2024.10576338.
    [43] LEE D and KIM Y. Design of a low-cost stochastic computing-based median filter for digital image processing[C]. 2024 21st International SoC Design Conference (ISOCC), Sapporo, Japan, 2024: 298–299. doi: 10.1109/ISOCC62682.2024.10762709.
    [44] AYGUN S, NAJAFI M H, IMANI M, et al. Agile simulation of stochastic computing image processing with contingency tables[J]. IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems, 2023, 42(10): 3474–3478. doi: 10.1109/TCAD.2023.3243136.
    [45] SONG Suwen, LIU Lu, WANG Zhongfeng, et al. Dual-bit-wise stochastic decoding for polar codes[J]. IEEE Transactions on Signal Processing, 2023, 71: 512–524. doi: 10.1109/TSP.2023.3247140.
    [46] HU Shuai, HAN Kaining, and HU Jianhao. Low complexity state metric memory reduction for turbo decoding with stochastic quantization[J]. IEEE Transactions on Circuits and Systems II: Express Briefs, 2024, 71(1): 385–389. doi: 10.1109/TCSII.2023.3300304.
    [47] YUAN Bo and PARHI K K. Belief propagation decoding of polar codes using stochastic computing[C]. 2016 IEEE International symposium on circuits and systems (ISCAS), Montreal, Canada, 2016: 157–160. doi: 10.1109/ISCAS.2016.7527194.
    [48] SOKOLOVSKII R, GRAELL I AMAT A, and BRÄNNSTRÖM F. Finite-length scaling of SC-LDPC codes with a limited number of decoding iterations[J]. IEEE Transactions on Information Theory, 2023, 69(8): 4869–4888. doi: 10.1109/TIT.2023.3257235.
    [49] HU Shuai, HAN Kaining, ZHU Yubin, et al. High throughput and hardware efficient hybrid LDPC decoder using bit-serial stochastic updating[J]. IEEE Transactions on Circuits and Systems I: Regular Papers, 2023, 70(9): 3653–3664. doi: 10.1109/TCSI.2023.3280201.
    [50] LI Yali and BIE Zhisong. LDPC decoding based on hybrid stochastic computing[C]. 2024 4th International Signal Processing, Communications and Engineering Management Conference (ISPCEM), Montreal, Canada, 2024: 7–11. doi: 10.1109/ISPCEM64498.2024.00007.
    [51] ZHAKATAYEV A, KIM K, CHOI K, et al. An efficient and accurate stochastic number generator using even-distribution coding[J]. IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems, 2018, 37(12): 3056–3066. doi: 10.1109/TCAD.2018.2789732.
    [52] SIM H and LEE J. A new stochastic computing multiplier with application to deep convolutional neural networks[C]. Proceedings of the 54th Annual Design Automation Conference 2017, Austin, USA, 2017: 1–6. doi: 10.1145/3061639.3062290.
    [53] SHOUSHTARI MOGHADAM M, AYGUN S, RIAHI ALAM M, et al. Accurate and energy-efficient stochastic computing with van der Corput sequences[C]. Proceedings of the 18th ACM International Symposium on Nanoscale Architectures, Dresden, Germany, 2023: 27. doi: 10.1145/3611315.3633265.
    [54] ZHANG Ruilin, XIAO Yangjun, LIU Jiawei, et al. A latch-based stochastic number generator for stochastic computing of extended naïve Bayesian network[C]. 2024 International VLSI Symposium on Technology, Systems and Applications (VLSI TSA), HsinChu, Taiwan, 2024: 1–4. doi: 10.1109/VLSITSA60681.2024.10546408.
    [55] AGRAWAL A, CHAKRABORTY I, ROY D, et al. Revisiting stochastic computing in the era of nanoscale nonvolatile technologies[J]. IEEE Transactions on Very Large Scale Integration (VLSI) Systems, 2020, 28(12): 2481–2494. doi: 10.1109/TVLSI.2020.2991679.
    [56] ZHAO Lei, ZHANG Youtao, and YANG Jun. SCA: A secure CNN accelerator for both training and inference[C]. 2020 57th ACM/IEEE Design Automation Conference (DAC), San Francisco, USA, 2020: 1–6. doi: 10.1109/DAC18072.2020.9218752.
    [57] ZHAO Lei, ZHANG Youtao, and YANG Jun. SRA: A secure ReRAM-based DNN accelerator[C]. Proceedings of the 59th ACM/IEEE Design Automation Conference, San Francisco, USA, 2022: 355–360. doi: 10.1145/3489517.3530440.
    [58] ZHANG Yawen, ZHANG Xinyue, SONG Jiahao, et al. Parallel convolutional neural network (CNN) accelerators based on stochastic computing[C]. 2019 IEEE International Workshop on Signal Processing Systems (SiPS), Nanjing, China, 2019: 19–24. doi: 10.1109/SiPS47522.2019.9020615.
    [59] SENGUPTA R, POLIAN I, and HAYES J P. Fault tolerance in stochastic circuits for recurrent sequential neural networks[C]. 2024 IEEE 33rd Asian Test Symposium (ATS), Ahmedabad, India, 2024: 1–6. doi: 10.1109/ATS64447.2024.10915353.
    [60] FRASSER C F, LINARES-SERRANO P, DE LOS RÍOS I D, et al. Fully parallel stochastic computing hardware implementation of convolutional neural networks for edge computing applications[J]. IEEE Transactions on Neural Networks and Learning Systems, 2023, 34(12): 10408–10418. doi: 10.1109/TNNLS.2022.3166799.
    [61] GOLBABAEI B, ZHU Guangxian, KAN Yirong, et al. A non-deterministic training approach for memory-efficient stochastic neural networks[C]. 2023 IEEE 36th International System-on-Chip Conference (SOCC), Santa Clara, USA, 2023: 1–6. doi: 10.1109/SOCC58585.2023.10256838.
    [62] MORÁN A, PARRILLA L, ROCA M, et al. Digital implementation of radial basis function neural networks based on stochastic computing[J]. IEEE Journal on Emerging and Selected Topics in Circuits and Systems, 2023, 13(1): 257–269. doi: 10.1109/JETCAS.2022.3231708.
    [63] ZHU Jingwei, WU Jingguo, YANG Zongru, et al. An area and energy-efficient systolic array accelerator architecture for deep neural networks using stochastic computing[J]. IEEE Transactions on Very Large Scale Integration (VLSI) Systems, 2025, 33(6): 1582–1595. doi: 10.1109/TVLSI.2025.3550786.
    [64] CHEN K C J and SYU W R. High reliable and accurate stochastic computing-based artificial neural network architecture design[C]. 2024 IEEE International Symposium on Circuits and Systems (ISCAS), Singapore, Singapore, 2024: 1–5. doi: 10.1109/ISCAS58744.2024.10558634.
    [65] BABU A D and GOMATHY C. Energy-efficient stochastic computing architectures for neural network performance in FPGA systems[C]. 2025 6th International Conference on Mobile Computing and Sustainable Informatics (ICMCSI), Goathgaun, Nepal, 2025: 415–419. doi: 10.1109/ICMCSI64620.2025.10883104.
    [66] HU Shuai, HAN Kaining, and HU Jianhao. High performance and hardware efficient stochastic computing elements for deep neural network[C]. 2023 6th World Conference on Computing and Communication Technologies (WCCCT), Chengdu, China, 2023: 181–186. doi: 10.1109/WCCCT56755.2023.10052402.
    [67] CHEN Jienan, HU Jianhao, and SOBELMAN G E. Stochastic MIMO detector based on the Markov chain Monte Carlo algorithm[J]. IEEE Transactions on Signal Processing, 2014, 62(6): 1454–1463. doi: 10.1109/TSP.2014.2301131.
    [68] CHEN Jienan, HU Jianhao, and ZHOU Jiangyun. Hardware and energy-efficient stochastic LU decomposition scheme for MIMO receivers[J]. IEEE Transactions on Very Large Scale Integration (VLSI) Systems, 2016, 24(4): 1391–1401. doi: 10.1109/TVLSI.2015.2446481.
    [69] QIAN Weikang, LI Xin, RIEDEL M D, et al. An architecture for fault-tolerant computation with stochastic logic[J]. IEEE Transactions on Computers, 2011, 60(1): 93–105. doi: 10.1109/TC.2010.202.
    [70] ANDERSON J H, HARA-AZUMI Y, and YAMASHITA S. Effect of LFSR seeding, scrambling and feedback polynomial on stochastic computing accuracy[C]. 2016 Design, Automation & Test in Europe Conference & Exhibition (DATE), Dresden, Germany, 2016: 1550–1555.
    [71] ALAGHI A and HAYES J P. Dimension reduction in statistical simulation of digital circuits[C]. Proceedings of the Symposium on Theory of Modeling & Simulation: DEVS Integrative M&S Symposium, Alexandria, USA, 2015: 1–8.
    [72] ZHONG Kuncai, LI Zexi, and QIAN Weikang. Towards low-cost high-accuracy stochastic computing architecture for univariate functions: Design and design space exploration[C]. Proceedings of the 2022 Conference & Exhibition on Design, Automation & Test in Europe, Antwerp, Belgium, 2022: 346–351.
    [73] LI Zhijing, CHEN Zhao, ZHANG Yili, et al. Simultaneous area and latency optimization for stochastic circuits by D flip-flop insertion[J]. IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems, 2019, 38(7): 1251–1264. doi: 10.1109/TCAD.2018.2846660.
    [74] SALEHI S A. Area-efficient LFSR-based stochastic number generators with minimum correlation[J]. IEEE Design & Test, 2024, 41(1): 50–59. doi: 10.1109/MDAT.2023.3278619.
    [75] CHEN T H, TING P, and HAYES J P. Achieving progressive precision in stochastic computing[C]. 2017 IEEE Global Conference on Signal and Information Processing (GlobalSIP), Montreal, Canada, 2017: 1320–1324. doi: 10.1109/GlobalSIP.2017.8309175.
    [76] LEE D and KIM Y. Towards quantized stochastic computing by leveraging reduced precision binary numbers through bit truncation[C]. 2023 IEEE 41st International Conference on Computer Design (ICCD), Washington, USA, 2023: 419–422. doi: 10.1109/ICCD58817.2023.00069.
  • 加载中
图(7) / 表(1)
计量
  • 文章访问数:  25
  • HTML全文浏览量:  9
  • PDF下载量:  4
  • 被引次数: 0
出版历程
  • 收稿日期:  2025-05-13
  • 修回日期:  2025-09-15
  • 网络出版日期:  2025-09-19

目录

    /

    返回文章
    返回