高级搜索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

反向散射NOMA辅助的直传与中继协同互惠传输方法

许尧 胡荣飞 贾少波 李博 王钢 张治中

许尧, 胡荣飞, 贾少波, 李博, 王钢, 张治中. 反向散射NOMA辅助的直传与中继协同互惠传输方法[J]. 电子与信息学报. doi: 10.11999/JEIT250405
引用本文: 许尧, 胡荣飞, 贾少波, 李博, 王钢, 张治中. 反向散射NOMA辅助的直传与中继协同互惠传输方法[J]. 电子与信息学报. doi: 10.11999/JEIT250405
XU Yao, HU Rongfei, JIA Shaobo, LI Bo, WANG Gang, ZHANG Zhizhong. Mutualistic Backscatter NOMA Method for Coordinated Direct and Relay Transmission System[J]. Journal of Electronics & Information Technology. doi: 10.11999/JEIT250405
Citation: XU Yao, HU Rongfei, JIA Shaobo, LI Bo, WANG Gang, ZHANG Zhizhong. Mutualistic Backscatter NOMA Method for Coordinated Direct and Relay Transmission System[J]. Journal of Electronics & Information Technology. doi: 10.11999/JEIT250405

反向散射NOMA辅助的直传与中继协同互惠传输方法

doi: 10.11999/JEIT250405 cstr: 32379.14.JEIT250405
基金项目: 国家自然科学基金(62301268, 62301502),江苏省自然科学基金(BK20220438),南京信息工程大学引进人才科研启动专项经费(2023r015),江苏省重点研发计划(BE2023088),江苏省双创团队((2023)200008),河南省优秀青年科学基金(252300421224)
详细信息
    作者简介:

    许尧:男,讲师,博士,研究方向为非正交多址接入、正交时频空间调制等

    胡荣飞:男,硕士生,研究方向为反向散射通信、非正交多址接入等

    贾少波:男,副教授,博士,研究方向为反向散射通信、物理层安全等

    李博:男,教授,博士,博士生导师,研究方向为空天地网络、飞行自组织网络、 通信感知一体化

    王钢:男,教授,博士,博士生导师,研究方向为物理层网络编码、通信网理论与技术、数据通信

    张治中:男,教授,博士,博士生导师,研究方向为移动通信、通信网络与测试技术等

    通讯作者:

    许尧 yaoxu@nuist.edu.cn

  • 中图分类号: TN929.5

Mutualistic Backscatter NOMA Method for Coordinated Direct and Relay Transmission System

Funds: The National Natural Science Foundation of China (62301268, 62301502), The Natural Science Foundation of Jiangsu Province of China (BK20220438), The Startup Foundation for Introducing Talent of NUIST (2023r015), Jiangsu Provincial Key Research and Development Program (BE2023088), Jiangsu Provincial Innovation and Entrepreneurship Team ((2023)200008), Henan Natural Science Foundation for Excellent Young Scholar (252300421224)
  • 摘要: 针对现有基于非正交多址接入的直传与中继协同传输(NOMA-CDRT)难以支持海量蜂窝物联网数据融合通信的问题,该文提出一种基于反向散射的互惠NOMA-CDRT方法。首先,借助反向散射调制与功率域叠加编码,构建信息传输和辅助一体化双向通信策略,实现蜂窝用户与物联网设备的频谱共享与互惠共生。其次,在理想和非理想串行干扰消除条件下,推导所提方法遍历和速率(ESR)的闭合表达式,以精确表征其系统性能。在此基础上,进一步设计基于改进粒子群优化算法的功率分配方案,以最大化ESR。仿真结果验证了理论分析及优化方案的有效性,并显示所提方法在ESR性能上显著优于传统NOMA-CDRT与正交多址接入方法。
  • 图  1  基于反向散射的互惠NOMA-CDRT系统

    图  2  系统ESR随发送信噪比$ {\rho _{\text{s}}} $的变化曲线

    图  3  蜂窝信号ESR随发送信噪比$ {\rho _{\text{s}}} $的变化曲线

    图  4  非理想SIC下系统ESR与功率分配系数的3维关系图

    图  5  非理想SIC下所提优化方案的系统ESR随迭代次数的变化曲线

    图  6  不同功率分配方案的系统ESR随发送信噪比$ {\rho _s} $的变化曲线

    1  基于改进PSO算法的功率分配方案

     初始化:最大迭代次数M,粒子数Np,惯性参数$ \omega = 0.7 $,学习因子$ {\lambda _1} = 2 $, $ {\lambda _2} = 3 $,第n个粒子初始位置$ {{\mathbf{l}}_n}(0) = [{x_n}(0),{y_n}(0)] $,
     初始速度$ {{\mathbf{v}}_n}(0) = [{v_{{x_n}}}(0),{v_{{y_n}}}(0)] $,且$ {x_n}(0) $和$ {y_n}(0) $分别为$ {a_{\text{c}}} $和$ {a_{\text{r}}} $规定范围内的随机数,初始个体最佳位置$ {{\mathbf{l}}_{n,{\text{p}}}}(0) = {{\mathbf{l}}_n}(0) $,全局最佳
     位置$ {{\mathbf{l}}_{\text{g}}}(0) = \mathop {\arg \max }\limits_{n \in \{ 1,2, \cdots ,{N_p}\} } ({C_{\text{S}}}({{\mathbf{l}}_n}(0))) $;
     (1) while $ 1 \le m \le M $do
     (2)  for $ 1 \le n \le {N_{\text{p}}} $do
     (3)   更新速度$ {{\mathbf{v}}_n}(m) = \omega {{\mathbf{v}}_n}(m - 1) + {\lambda _1}\zeta _{{v_n}}^1({{\mathbf{l}}_{\text{g}}}(m - 1) - {{\mathbf{l}}_n}(m - 1)) + {\lambda _2}\zeta _{{v_n}}^2({{\mathbf{l}}_{n,{\text{p}}}}(m - 1) - {{\mathbf{l}}_n}(m - 1)) $,其中$ \zeta _{{v_n}}^1 $和$ \zeta _{{v_n}}^2 $为[0,1]的
         随机数;
     (4)   更新位置$ {{\mathbf{l}}_n}(m) = {{\mathbf{l}}_n}(m - 1) + {{\mathbf{v}}_n}(m) $;
     (5)   判断$ {x_n}(m) $和$ {y_n}(m) $是否在限制范围内,若超出边界值,则将其设置为该边界值;
     (6)   计算$ {C_{\text{S}}}({{\mathbf{l}}_{n,{\text{p}}}}(m - 1)) $,$ {C_{\text{S}}}({{\mathbf{l}}_{\text{g}}}(m - 1)) $,$ {C_{\text{S}}}({{\mathbf{l}}_n}(m)) $;
     (7)   更新$ {{\mathbf{l}}_{n,{\text{p}}}}(m) = \arg \max ({C_{\text{S}}}({{\mathbf{l}}_n}(m)),{C_{\text{S}}}({{\mathbf{l}}_{n,{\text{p}}}}(m - 1))) $, $ {{\mathbf{l}}_{\text{g}}}(m) = \arg \max ({C_{\text{S}}}({{\mathbf{l}}_n}(m)),{C_{\text{S}}}({{\mathbf{l}}_{\text{g}}}(m - 1))) $;
     (8)  end for
     (9)   迭代次数$ m = m + 1 $;
     (10) end while
     (11) 根据$ {{\mathbf{l}}_{\text{g}}}(M) $,输出功率分配系数$ {a_{\text{c}}} $, $ {a_{\text{r}}} $和$ {a_{\text{e}}} $的最优组合。
    下载: 导出CSV
  • [1] VAEZI M, AZARI A, KHOSRAVIRAD S R, et al. Cellular, wide-area, and non-terrestrial IoT: A survey on 5G advances and the road toward 6G[J]. IEEE Communications Surveys & Tutorials, 2022, 24(2): 1117–1174. doi: 10.1109/COMST.2022.3151028.
    [2] XU Yao, CHENG Julian, WANG Gang, et al. Adaptive coordinated direct and relay transmission for NOMA networks: A joint downlink-uplink scheme[J]. IEEE Transactions on Wireless Communications, 2021, 20(7): 4328–4346. doi: 10.1109/TWC.2021.3058122.
    [3] 李俊霞, 王欣, 黄高见, 等. 无源定位技术发展及其展望[J]. 无线电工程, 2024, 54(8): 1825–1846. doi: 10.3969/j.issn.1003-3106.2024.08.001.

    LI Junxia, WANG Xin, HUANG Gaojian, et al. Development and prospects of passive positioning technology[J]. Radio Engineering, 2024, 54(8): 1825–1846. doi: 10.3969/j.issn.1003-3106.2024.08.001.
    [4] YU Xianhua and LI Dong. Attention mechanism aided signal detection in backscatter communications with insufficient training data[J]. IEEE Transactions on Vehicular Technology, 2024, 73(5): 7395–7399. doi: 10.1109/TVT.2023.3346198.
    [5] JIA Shaobo, WANG Rong, LOU Yi, et al. Secrecy performance analysis of UAV-assisted ambient backscatter communications with jamming[J]. IEEE Transactions on Wireless Communications, 2024, 23(12): 18111–18125. doi: 10.1109/TWC.2024.3461800.
    [6] LI Dong. Two birds with one stone: Exploiting decode-and-forward relaying for opportunistic ambient backscattering[J]. IEEE Transactions on Communications, 2020, 68(3): 1405–1416. doi: 10.1109/TCOMM.2019.2957490.
    [7] CHEN Weiyu, DING Haiyang, WANG Shilian, et al. Backscatter cooperation in NOMA communications systems[J]. IEEE Transactions on Wireless Communications, 2021, 20(6): 3458–3474. doi: 10.1109/TWC.2021.3050600.
    [8] XU Yao, JIA Shaobo, ZHANG Di, et al. Spectral efficiency of D2D-enabled cellular CDRT systems leveraging backscatter NOMA[C]. 2023 IEEE Globecom Workshops (GC Wkshps), Kuala Lumpur, Malaysia, 2023: 274–279. doi: 10.1109/GCWkshps58843.2023.10464851.
    [9] LI Xingwang, ZHAO Mengle, ZENG Ming, et al. Hardware impaired ambient backscatter NOMA systems: Reliability and security[J]. IEEE Transactions on Communications, 2021, 69(4): 2723–2736. doi: 10.1109/TCOMM.2021.3050503.
    [10] LI Xingwang, WANG Qunshu, ZENG Ming, et al. Physical-layer authentication for ambient backscatter-aided NOMA symbiotic systems[J]. IEEE Transactions on Communications, 2023, 71(4): 2288–2303. doi: 10.1109/TCOMM.2023.3245659.
    [11] YANG Gang, XU Yinyue, and LIANG Yingchang. Resource allocation in NOMA-enhanced backscatter communication networks for wireless powered IoT[J]. IEEE Wireless Communications Letters, 2020, 9(1): 117–120. doi: 10.1109/LWC.2019.2944369.
    [12] 徐勇军, 姜思巧, 王公仆, 等. 基于不完美CSI的认知反向散射通信吞吐量最大化算法[J]. 电子与信息学报, 2023, 45(7): 2325–2333. doi: 10.11999/JEIT221483.

    XU Yongjun, JIANG Siqiao, WANG Gongpu, et al. Throughput maximization algorithm for cognitive backscatter communication with imperfect CSI[J]. Journal of Electronics & Information Technology, 2023, 45(7): 2325–2333. doi: 10.11999/JEIT221483.
    [13] 张倩倩, 王俊, 梁应敞. 面向6G的共生散射通信技术: 原理、方法与应用[J]. 中国科学: 信息科学, 2022, 52(8): 1393–1416. doi: 10.1360/SSI-2022-0153.

    ZHANG Qianqian, WANG Jun, and LIANG Yingchang. Symbiotic backscatter communications for 6G: Principles, approaches, and applications[J]. Scientia Sinica Informationis, 2022, 52(8): 1393–1416. doi: 10.1360/SSI-2022-0153.
    [14] LIU Yingting, ZHOU Zhiyang, YE Yinghui, et al. Outage performance analysis for mutualistic symbiotic backscatter communication systems[J]. IEEE Transactions on Vehicular Technology, 2025, 74(2): 3457–3462. doi: 10.1109/TVT.2024.3472042.
    [15] LONG Ruizhe, LIANG Yingchang, GUO Huayan, et al. Symbiotic radio: A new communication paradigm for passive internet of things[J]. IEEE Internet of Things Journal, 2020, 7(2): 1350–1363. doi: 10.1109/JIOT.2019.2954678.
    [16] XU Yao, JIA Shaobo, LI Xingwang, et al. Mutualistic relaying NOMA transmission for green cellular IoT with backscatter sensors[J]. IEEE Sensors Journal, 2024, 24(19): 31228–31244. doi: 10.1109/JSEN.2024.3441327.
    [17] WANG Jun, DING Xiangyu, ZHANG Qianqian, et al. Multiple access design for symbiotic radios: Facilitating massive IoT connections with cellular networks[J]. IEEE Transactions on Wireless Communications, 2024, 23(1): 201–216. doi: 10.1109/TWC.2023.3276887.
    [18] YE Yinghui, TIAN Yujia, CHU Xiaoli, et al. Outage performance of relay-assisted mutualistic backscatter communications under energy-causality constraint[J]. IEEE Transactions on Communications, 2025, 73(7): 4616–4629. doi: 10.1109/TCOMM.2024.3511712.
    [19] 李兴旺, 王新莹, 田心记, 等. 基于非理想条件可重构智能超表面辅助无线携能通信-非正交多址接入系统通感性能研究[J]. 电子与信息学报, 2024, 46(6): 2434–2442. doi: 10.11999/JEIT231395.

    LI Xingwang, WANG Xinying, TIAN Xinji, et al. Communication and sensing performance analysis of RIS-assisted SWIPT-NOMA system under non-ideal conditions[J]. Journal of Electronics & Information Technology, 2024, 46(6): 2434–2442. doi: 10.11999/JEIT231395.
    [20] 李兴旺, 田志发, 张建华, 等. IRS辅助NOMA网络下隐蔽通信性能研究[J]. 中国科学: 信息科学, 2024, 54(6): 1502–1515. doi: 10.1360/SSI-2023-0174.

    LI Xingwang, TIAN Zhifa, ZHANG Jianhua, et al. Performance analysis of covert communication in IRS-assisted NOMA networks[J]. Scientia Sinica Informationis, 2024, 54(6): 1502–1515. doi: 10.1360/SSI-2023-0174.
    [21] CHATZIDIAMANTIS N D and KARAGIANNIDIS G K. On the distribution of the sum of gamma-gamma variates and applications in RF and optical wireless communications[J]. IEEE Transactions on Communications, 2011, 59(5): 1298–1308. doi: 10.1109/TCOMM.2011.020811.090205.
    [22] GRADSHTEYN I S and RYZHIK I M. Table of Integrals, Series, and Products[M]. 7th ed. Amsterdam: Elsevier, 2007. (查阅网上资料, 未找到本条文献页码信息, 请补充).
    [23] ADAMCHIK V S and MARICHEV O I. The algorithm for calculating integrals of hypergeometric type functions and its realization in reduce system[C]. Proceedings of the International Symposium on Symbolic and Algebraic Computation, Tokyo, Japan, 1990: 212–224. doi: 10.1145/96877.96930.
  • 加载中
图(6) / 表(1)
计量
  • 文章访问数:  23
  • HTML全文浏览量:  11
  • PDF下载量:  1
  • 被引次数: 0
出版历程
  • 收稿日期:  2025-05-13
  • 修回日期:  2025-08-20
  • 网络出版日期:  2025-09-01

目录

    /

    返回文章
    返回