高级搜索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

一种基于黎曼流形优化与非单调线性搜索的混合波束成形算法

严军荣 施威涛 李沛

严军荣, 施威涛, 李沛. 一种基于黎曼流形优化与非单调线性搜索的混合波束成形算法[J]. 电子与信息学报. doi: 10.11999/JEIT250396
引用本文: 严军荣, 施威涛, 李沛. 一种基于黎曼流形优化与非单调线性搜索的混合波束成形算法[J]. 电子与信息学报. doi: 10.11999/JEIT250396
YAN Junrong, SHI Weitao, LI Pei. A Hybrid Beamforming Algorithm Based on Riemannian Manifold Optimization with Non-Monotonic Line Search[J]. Journal of Electronics & Information Technology. doi: 10.11999/JEIT250396
Citation: YAN Junrong, SHI Weitao, LI Pei. A Hybrid Beamforming Algorithm Based on Riemannian Manifold Optimization with Non-Monotonic Line Search[J]. Journal of Electronics & Information Technology. doi: 10.11999/JEIT250396

一种基于黎曼流形优化与非单调线性搜索的混合波束成形算法

doi: 10.11999/JEIT250396 cstr: 32379.14.JEIT250396
基金项目: 国家自然科学基金(U21A20450, 62301204)
详细信息
    作者简介:

    严军荣:男,讲师,研究方向为无线通信网络、软件定义网络、视觉目标跟踪等

    施威涛:男,硕士生,研究方向为无线通信技术与运用、毫米波大规模MIMO系统中的预编码技术

    李沛:女,讲师,研究方向为多波束传输、空间资源优化、延时感知节能方案等

    通讯作者:

    严军荣 yjron@163.com

  • 中图分类号: TN929.5

A Hybrid Beamforming Algorithm Based on Riemannian Manifold Optimization with Non-Monotonic Line Search

Funds: The National Natural Science Foundation of China (U21A20450, 62301204)
  • 摘要: 针对毫米波Massive MIMO系统中混合波束成形算法存在着的复杂度高、运行时间长、能量效率低的问题,该文提出一种基于黎曼流形优化与非单调线性搜索的混合波束成形算法(MO-NMLS)。该算法首先采用数字预编码器的最小二乘解重构目标函数,以降低求解维度;其次构建黎曼流形计算新目标函数的黎曼梯度,从而将模拟域的恒模约束转化为无约束优化;然后基于当前迭代点与历史迭代点梯度信息的非单调线性搜索算法计算动态步长因子,以提升数字预编码器的收敛速度;最后采用数字预编码器优化模拟预编码器,以实现混合预编码器的迭代更新。仿真结果表明,在全连接结构下,所提算法在保持等效频谱效率时,相比CG算法减少了75.3%的运行时间;尤其是在重叠子阵结构子阵偏移量为8时,所提算法的能量效率较全连接结构提升了10.9%。
  • 图  1  毫米波Massive MIMO混合预编码系统

    图  2  混合波束成形的3种阵列结构

    图  3  黎曼流形的切线空间和切线向量示意图

    图  4  不同波束成形算法内部迭代次数与信噪比的关系

    图  5  不同波束成形算法运行时间与信噪比的关系

    图  6  不同波束成形算法频谱效率与信噪比的关系

    图  7  全连接结构下,3种$ ({N_{\text{t}}},{N_{{\text{RF}}}}) $时不同算法的频谱效率随信噪比变化曲线

    图  8  重叠子阵结构中子阵偏移量对能效的影响

    1  基于MO-NMLS的模拟预编码器设计(全连接结构/重叠子阵结构)

     输入:最优数字预编码矩阵$ {{\boldsymbol{V}}_{{\text{opt}}}} $,初始黎曼梯度$ {\text{grad}}{f_{{{\boldsymbol{x}}_0}}} $,初始点$ {{\boldsymbol{x}}_0} \in \mathcal{M} $
     1.全连接结构根据式(13)计算欧式梯度,重叠子阵结构根据式(14)计算欧式梯度
     2.根据式(16)计算初始梯度$ {{\boldsymbol{g}}_0} = {\text{grad}}{f_{{{\boldsymbol{x}}_0}}} $
     3.设置迭代计数器$ k = 0 $
     4.while未满足终止条件(梯度范数$ {\left\| {{{\boldsymbol{g}}_k}} \right\|_{\text{F}}} < \mu $,步长$ {\alpha _k} < {\alpha _{\min }} $或达到最大迭代次数)
     5.分别根据式(20)和式(21)计算${{\boldsymbol{s}}_k}$和${{\boldsymbol{y}}_k}$
     6.根据式(19)计算交替步长$ \alpha _k^{{\text{BB}}} $
     7.步长约束$ \alpha _{k + 1}^{{\text{BB}}} = \left\{ \begin{gathered} \min \{ {\alpha _{\max }},\max \{ {\alpha _{\min }},\alpha _k^{{\text{BB}}}\} \} {\text{ if}}\left\langle {{{\boldsymbol{s}}_k},{{\boldsymbol{y}}_k}} \right\rangle > 0 \\ {\alpha _{\max }}{\text{ otherwise}} \\ \end{gathered} \right. $
     8.更新黎曼梯度$ {{\boldsymbol{g}}_{k + 1}} = {\text{grad}}{f_{{{\boldsymbol{x}}_{k + 1}}}} $,搜索方向$ {\eta _k} = - {{\alpha }_k}{{\boldsymbol{g}}_k} $,回缩迭代点$ {{\boldsymbol{x}}_{k + 1}} = {\text{Retr}}( - {\alpha _k}{{\boldsymbol{g}}_k}) $
     9.$ k = k + 1 $
     10.end
    下载: 导出CSV

    2  基于MO-NMLS的混合波束成形算法

     输入:最优数字预编码矩阵$ {{\boldsymbol{V}}_{{\text{opt}}}} $,模拟预编码器$ {\boldsymbol{V}}_{{\text{RF}}}^k $具有随机
     相位
     1.设置迭代计数器$ k = 0 $,计算黎曼梯度$ {\text{grad}}{J_{{\boldsymbol{V}}_{{\text{RF}}}^k}} $
     2.while未满足终止条件(同算法1)
     3.固定$ {\boldsymbol{V}}_{{\text{RF}}}^k $,$ {\boldsymbol{V}}_{\text{B}}^k = {({\boldsymbol{V}}_{{\text{RF}}}^k)^\dagger }{{\boldsymbol{V}}_{{\text{opt}}}} $
     4.使用算法1优化$ {\boldsymbol{V}}_{{\text{RF}}}^{k + 1} $
     5.$k = k + 1$
     6.end
     7.计算数字预编码器$ {{\boldsymbol{V}}_{\text{B}}} = {({\boldsymbol{V}}_{{\text{RF}}}^{\text{H}}{{\boldsymbol{V}}_{{\text{RF}}}})^{ - 1}}{\boldsymbol{V}}_{{\text{RF}}}^{\text{H}}{{\boldsymbol{V}}_{{\text{opt}}}} $
    下载: 导出CSV
  • [1] XUE Qing, FANG Xuming, XIAO Ming, et al. Multiuser millimeter wave communications with nonorthogonal beams[J]. IEEE Transactions on Vehicular Technology, 2017, 66(7): 5675–5688. doi: 10.1109/TVT.2016.2617083.
    [2] WENG Shudi, JIANG Fan, and WYMEERSCH H. Wideband mmWave massive MIMO channel estimation and localization[J]. IEEE Wireless Communications Letters, 2023, 12(8): 1314–1318. doi: 10.1109/LWC.2023.3270160.
    [3] ALQAISEI M A, SHETA A F A, and ELSHAFIEY I. Hybrid beamforming for multi-user massive MIMO systems at millimeter-wave networks[C]. The 39th National Radio Science Conference (NRSC), Cairo, Egypt, 2022: 181–187. doi: 10.1109/NRSC57219.2022.9971273.
    [4] KESKIN M F, MARCUS C, ERIKSSON O, et al. Integrated sensing and communications with MIMO-OTFS: ISI/ICI exploitation and delay-doppler multiplexing[J]. IEEE Transactions on Wireless Communications, 2024, 23(8): 10229–10246. doi: 10.1109/TWC.2024.3370501.
    [5] MOLISCH A F, RATNAM V V, HAN Shengqian, et al. Hybrid beamforming for massive MIMO: A survey[J]. IEEE Communications Magazine, 2017, 55(9): 134–141. doi: 10.1109/MCOM.2017.1600400.
    [6] ZHANG E and HUANG C. On achieving optimal rate of digital precoder by RF-baseband codesign for MIMO systems[C]. IEEE 80th Vehicular Technology Conference (VTC2014-Fall), Vancouver, Canada, 2014: 1–5. doi: 10.1109/VTCFall.2014.6966076.
    [7] RAJASHEKAR R and HANZO L. Hybrid beamforming in mm-Wave MIMO systems having a finite input alphabet[J]. IEEE Transactions on Communications, 2016, 64(8): 3337–3349. doi: 10.1109/TCOMM.2016.2580671.
    [8] 严军荣, 江沛莲, 李沛. 一种基于有限内存拟牛顿法的混合波束成形算法[J]. 电子与信息学报, 2024, 46(6): 2542–2548. doi: 10.11999/JEIT230656.

    YAN Junrong, JIANG Peilian, and LI Pei. A hybrid beamforming algorithm based on limited-broyden-fletcher-Goldfarb-Shanno[J]. Journal of Electronics & Information Technology, 2024, 46(6): 2542–2548. doi: 10.11999/JEIT230656.
    [9] ZHAO Xingyu, LIN Tian, ZHU Yu, et al. Partially-connected hybrid beamforming for spectral efficiency maximization via a weighted MMSE equivalence[J]. IEEE Transactions on Wireless Communications, 2021, 20(12): 8218–8232. doi: 10.1109/TWC.2021.3091524.
    [10] PALA S, TAGHIZADEH O, KATWE M, et al. Secure RIS-assisted hybrid beamforming design with low-resolution phase shifters[J]. IEEE Transactions on Wireless Communications, 2024, 23(8): 10198–10212. doi: 10.1109/TWC.2024.3370372.
    [11] LIN Tian, CONG Jiaqi, ZHU Yu, et al. Hybrid beamforming for millimeter wave systems using the MMSE criterion[J]. IEEE Transactions on Communications, 2019, 67(5): 3693–3708. doi: 10.1109/TCOMM.2019.2893632.
    [12] YANG Shuo and DOU Zheng. A hybrid precoding design based on alternate minimization[C]. The 3rd International Conference on Intelligent Communications and Computing (ICC), Nanchang, China, 2023: 207–212. doi: 10.1109/ICC59986.2023.10421041.
    [13] AYACH O E, RAJAGOPAL S, ABU-SURRA S, et al. Spatially sparse precoding in millimeter wave MIMO systems[J]. IEEE Transactions on Wireless Communications, 2014, 13(3): 1499–1513. doi: 10.1109/TWC.2014.011714.130846.
    [14] YU Xianghao, SHEN J C, ZHANG Jun, et al. Alternating minimization algorithms for hybrid precoding in millimeter wave MIMO Systems[J]. IEEE Journal of Selected Topics in Signal Processing, 2016, 10(3): 485–500. doi: 10.1109/JSTSP.2016.2523903.
    [15] JIN Juening, ZHENG Y R, CHEN Wen, et al. Hybrid precoding for millimeter wave MIMO systems: A matrix factorization approach[J]. IEEE Transactions on Wireless Communications, 2018, 17(5): 3327–3339. doi: 10.1109/TWC.2018.2810072.
    [16] MOHAMMED A N and KOSTANIC I. Stochastic gradient descent for reducing complexity in millimeter wave hybrid precoding design[C]. IEEE 19th Wireless and Microwave Technology Conference (WAMICON), Sand Key, USA, 2018: 1–4. doi: 10.1109/WAMICON.2018.8363884.
    [17] WANG Zheng, LIANG Le, LYU Shanxiang, et al. Efficient statistical linear precoding for downlink Massive MIMO systems[J]. IEEE Transactions on Wireless Communications, 2024, 23(10): 14805–14818. doi: 10.1109/TWC.2024.3419137.
    [18] SONG Nuan, YANG Tao, and SUN Huan. Overlapped subarray based hybrid beamforming for millimeter wave multiuser massive MIMO[J]. IEEE Signal Processing Letters, 2017, 24(5): 550–554. doi: 10.1109/LSP.2017.2681689.
    [19] LI Ang and MASOUROS C. Hybrid precoding and combining design for millimeter-wave multi-user MIMO based on SVD[C]. 2017 IEEE International Conference on Communications (ICC), Paris, France, 2017: 1–6. doi: 10.1109/ICC.2017.7996970.
  • 加载中
图(8) / 表(2)
计量
  • 文章访问数:  14
  • HTML全文浏览量:  6
  • PDF下载量:  2
  • 被引次数: 0
出版历程
  • 收稿日期:  2025-05-09
  • 修回日期:  2025-08-29
  • 网络出版日期:  2025-09-08

目录

    /

    返回文章
    返回