高级搜索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

复数子空间神经网络驱动的均匀圆阵三维定位方法

蒋伟 支博昕 杨俊杰 王惠 丁鹏飞 张政

蒋伟, 支博昕, 杨俊杰, 王惠, 丁鹏飞, 张政. 复数子空间神经网络驱动的均匀圆阵三维定位方法[J]. 电子与信息学报. doi: 10.11999/JEIT250395
引用本文: 蒋伟, 支博昕, 杨俊杰, 王惠, 丁鹏飞, 张政. 复数子空间神经网络驱动的均匀圆阵三维定位方法[J]. 电子与信息学报. doi: 10.11999/JEIT250395
JIANG Wei, ZHI Boxin, YANG Junjie, WAN hui, DING Pengfei, ZHANG Zheng. 3D Localization Method with Uniform Circular Array Driven by Complex Subspace Neural Network[J]. Journal of Electronics & Information Technology. doi: 10.11999/JEIT250395
Citation: JIANG Wei, ZHI Boxin, YANG Junjie, WAN hui, DING Pengfei, ZHANG Zheng. 3D Localization Method with Uniform Circular Array Driven by Complex Subspace Neural Network[J]. Journal of Electronics & Information Technology. doi: 10.11999/JEIT250395

复数子空间神经网络驱动的均匀圆阵三维定位方法

doi: 10.11999/JEIT250395 cstr: 32379.14.JEIT250395
基金项目: 国家自然科学基金(61202369, 61401269)
详细信息
    作者简介:

    蒋伟:女,教授,研究方向为信号处理与深度学习

    支博昕:男,硕士生,研究方向为阵列信号处理与室内定位

    杨俊杰:男,教授,研究方向为无线传感器网络与电力通信技术

    王惠:女,硕士生,研究方向为蓝牙Mesh组网数据传输

    丁鹏飞:男,硕士生,研究方向为嵌入式开发与短距离定位

    张政:男,硕士生,研究方向为短距离通信技术

    通讯作者:

    杨俊杰 yangjj@sdju.edu.cn

  • 中图分类号: TN820; TP183

3D Localization Method with Uniform Circular Array Driven by Complex Subspace Neural Network

Funds: The National Natural Science Foundation of China (61202369, 61401269)
  • 摘要: 针对复杂室内环境中由频率偏移、多径传播以及噪声干扰等因素导致定位精度不足的问题,该文提出一种复数子空间神经网络(CSNN)驱动的均匀圆阵三维定位方法。首先,构建基于信号参考周期与采样周期的双估计频率补偿算法。通过预估计对精估计的频率模糊进行修正,以获得精确的频偏值实现频率补偿。其次,提出基于复数子空间神经网络的二维角度估计算法。利用复数卷积神经网络(CVCNN)重构信号协方差矩阵,抑制非主径分量与噪声的影响,恢复信号与噪声子空间的正交性,并利用模式空间转换与子空间算法实现高精度二维角度估计。在此基础上,设计了基于均匀圆阵的原型系统进行实验。结果表明,该方法在跨场景迁移后二维与三维定位的平均误差分别为28.9 cm和36.5 cm,验证了所提方法的定位精度与泛化能力。
  • 图  1  均匀圆阵信号接收模型

    图  2  复数子空间神经网络驱动的均匀圆阵三维定位流程

    图  3  CSNN算法结构

    图  4  CVCNN网络模型

    图  5  蓝牙AoA原型系统

    图  6  不同频率补偿方法的性能比较

    图  7  角度估计性能比较

    图  8  CSNN与UCA-ESPRIT在不同干扰下的角度估计误差

    图  9  真实场景

    图  10  大厅场景角度估计误差CDF曲线

    图  11  跨场景角度估计误差CDF曲线

    图  12  多信源角度估计误差CDF曲线

    图  13  3类迁移场景定位误差CDF曲线

    表  1  大厅场景角度估计误差(°)

    方法 方位角 俯仰角
    UCA-ESPRIT 9.23 11.48
    UCA-MUSIC 10.48 22.84
    FPM 5.94 9.85
    CVCNN[14] 1.97 2.21
    CSNN 1.07 1.28
    下载: 导出CSV

    表  2  跨场景角度估计误差(°)

    方法 仓库 走廊 办公室 平均
    UCA-ESPRIT [8.01, 10.15] [9.91, 12.03] [11.37, 14.28] [9.76, 12.15]
    UCA-MUSIC [8.78, 22.46] [10.49, 20.90] [13.59, 23.28] [10.90, 22.21]
    FPM [3.75, 9.70] [3.89, 7.81] [8.09, 10.39] [5.24, 9.30]
    CVCNN[14] [3.46, 3.27] [3.49, 3.31] [3.75, 4.21] [3.57, 3.60]
    CSNN [2.23, 2.73] [2.78, 3.11] [3.33, 4.32] [2.78, 3.39]
    注:[a, b]表示a为方位角误差,b为俯仰角误差。
    下载: 导出CSV

    表  3  单信源与多信源角度估计误差(°)

    方法 单信源 多信源
    UCA-ESPRIT [7.29, 10.06] [6.45, 13.97]
    UCA-MUSIC [4.81, 25.59] [5.21, 26.84]
    FPM [5.39, 4.83] [6.12, 5.58]
    CVCNN[14] [3,53, 2.80] [4.94, 2.54]
    CSNN [2.95, 1.61] [2.81, 2.15]
    注:[a, b]表示a为方位角误差,b为俯仰角误差。
    下载: 导出CSV

    表  4  4类场景下二维和三维定位平均误差(cm)

    方法 仓库 走廊 办公室 大厅
    UCA-ESPRIT [89.7, 128.5] [118.1, 144.6] [122.2, 174.2] [109.4, 138.2]
    UCA-MUSIC [102.9, 167.0] [114.6, 171.7] [147.5, 196.9] [111.2, 166.1]
    FPM [39.6, 72.4] [36.8, 64.5] [79.2, 118.1] [58.5, 79.2]
    CVCNN[14] [33.2, 36.2] [30.7, 38.5] [38.8, 46.0] [21.8, 27.7]
    CSNN [25.1, 29.7] [30.1, 35.5] [31.5, 44.3] [18.1, 24.6]
    注:[a, b]表示a为二维定位误差,b为三维定位误差。
    下载: 导出CSV
  • [1] 杨秀建, 皇甫尚昆, 敖鹏, 等. 基于改进全质心-Taylor的UWB定位方法[J]. 仪器仪表学报, 2024, 45(10): 284–294. doi: 10.19650/j.cnki.cjsi.J2412618.

    YANG Xiujian, HUANGFU Shangkun, AO Peng, et al. Improved full-centroid-Taylor based UWB localization[J]. Chinese Journal of Scientific Instrument, 2024, 45(10): 284–294. doi: 10.19650/j.cnki.cjsi.J2412618.
    [2] 赵万龙, 田新元, 陈超, 等. 联合Spline插值的Wi-Fi指纹匹配定位算法[J]. 电子与信息学报, 2024, 46(9): 3563–3570. doi: 10.11999/JEIT230116.

    ZHAO Wanlong, TIAN Xinyuan, CHEN Chao, et al. Wi-Fi fingerprint localization uniting spline interpolation[J]. Journal of Electronics & Information Technology, 2024, 46(9): 3563–3570. doi: 10.11999/JEIT230116.
    [3] ZHUANG Yuan, ZHANG Chongyang, HUAI Jianzhu, et al. Bluetooth localization technology: Principles, applications, and future trends[J]. IEEE Internet of Things Journal, 2022, 9(23): 23506–23524. doi: 10.1109/JIOT.2022.3203414.
    [4] SAMBU P and WON M. An experimental study on direction finding of Bluetooth 5.1: Indoor vs outdoor[C]. 2022 IEEE Wireless Communications and Networking Conference (WCNC), Austin, USA, 2022: 1934–1939. doi: 10.1109/WCNC51071.2022.9771930.
    [5] PAULINO N and PESSOA L M. Self-localization via circular Bluetooth 5.1 antenna array receiver[J]. IEEE Access, 2023, 11: 365–395. doi: 10.1109/ACCESS.2022.3233130.
    [6] HUANG Chenglin, TIAN Zengshan, HE Wei, et al. Spotlight: A 3-D indoor localization system in wireless sensor networks based on orientation and RSSI measurements[J]. IEEE Sensors Journal, 2023, 23(21): 26662–26676. doi: 10.1109/JSEN.2023.3315790.
    [7] YE Hongyun, YANG Biao, LONG Zhiqiang, et al. A method of indoor positioning by signal fitting and PDDA algorithm using BLE AOA device[J]. IEEE Sensors Journal, 2022, 22(8): 7877–7887. doi: 10.1109/JSEN.2022.3141739.
    [8] WANG Bowen, WANG Yunlong, QIU Xinyou, et al. BLE localization with polarization sensitive array[J]. IEEE Wireless Communications Letters, 2021, 10(5): 1014–1017. doi: 10.1109/LWC.2021.3055558.
    [9] KHAN A, WANG S, and ZHU Ziming. Angle-of-arrival estimation using an adaptive machine learning framework[J]. IEEE Communications Letters, 2019, 23(2): 294–297. doi: 10.1109/LCOMM.2018.2884464.
    [10] PHILIPS D R, SALAMI E, RAMIAH H, et al. Location accuracy optimization in Bluetooth Low Energy (BLE) 5.1-based Indoor Positioning System (IPS)—a machine learning approach[J]. IEEE Access, 2023, 11: 140186–140201. doi: 10.1109/ACCESS.2023.3338358.
    [11] MATHEWS C P and ZOLTOWSKI M D. Eigenstructure techniques for 2-D angle estimation with uniform circular arrays[J]. IEEE Transactions on Signal Processing, 1994, 42(9): 2395–2407. doi: 10.1109/78.317861.
    [12] MCKILLIAM R G, QUINN B G, CLARKSON I V L, et al. Frequency estimation by phase unwrapping[J]. IEEE Transactions on Signal Processing, 2010, 58(6): 2953–2963. doi: 10.1109/TSP.2010.2045786.
    [13] CHEN Peng, CHEN Zhimin, LIU Liang, et al. SDOA-Net: An efficient deep-learning-based DOA estimation network for imperfect array[J]. IEEE Transactions on Instrumentation and Measurement, 2024, 73: 8503512. doi: 10.1109/TIM.2024.3391338.
    [14] HU Shulin, ZENG Cao, LIU Minti, et al. Robust DOA estimation using deep complex-valued convolutional networks with sparse prior[C]. 2023 6th International Conference on Information Communication and Signal Processing (ICICSP), Xi'an, China, 2023: 234–239. doi: 10.1109/ICICSP59554.2023.10390873.
    [15] XU Xiaoxuan and HUANG Qinghua. MD-DOA: A model-based deep learning DOA estimation architecture[J]. IEEE Sensors Journal, 2024, 24(12): 20240–20253. doi: 10.1109/JSEN.2024.3396337.
    [16] SHMUEL D H, MERKOFER J P, REVACH G, et al. SubspaceNet: Deep learning-aided subspace methods for DoA estimation[J]. IEEE Transactions on Vehicular Technology, 2025, 74(3): 4962–4976. doi: 10.1109/TVT.2024.3496119.
  • 加载中
图(13) / 表(4)
计量
  • 文章访问数:  58
  • HTML全文浏览量:  25
  • PDF下载量:  7
  • 被引次数: 0
出版历程
  • 收稿日期:  2025-05-09
  • 修回日期:  2025-10-11
  • 录用日期:  2025-11-03
  • 网络出版日期:  2025-11-14

目录

    /

    返回文章
    返回