高级搜索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

一种利用牛顿法的零相关区序列优化设计方法

呼恩波 刘涛 李玉博

呼恩波, 刘涛, 李玉博. 一种利用牛顿法的零相关区序列优化设计方法[J]. 电子与信息学报. doi: 10.11999/JEIT250394
引用本文: 呼恩波, 刘涛, 李玉博. 一种利用牛顿法的零相关区序列优化设计方法[J]. 电子与信息学报. doi: 10.11999/JEIT250394
HU Enbo, LIU Tao, LI Yubo. An Optimization Design Method for Zero-Correlation Zone Sequences Based on Newton’s Method[J]. Journal of Electronics & Information Technology. doi: 10.11999/JEIT250394
Citation: HU Enbo, LIU Tao, LI Yubo. An Optimization Design Method for Zero-Correlation Zone Sequences Based on Newton’s Method[J]. Journal of Electronics & Information Technology. doi: 10.11999/JEIT250394

一种利用牛顿法的零相关区序列优化设计方法

doi: 10.11999/JEIT250394 cstr: 32379.14.JEIT250394
基金项目: 国家自然科学基金 (62471427),河北省中央引导地方科技发展资金项目(246Z0403G)
详细信息
    作者简介:

    呼恩波:男,硕士,研究方向为序列设计和雷达通信一体化

    刘涛:女,讲师,研究方向为序列设计和编码理论

    李玉博:男,教授,研究方向为序列设计与编码、码域非正交多址技术、通信与雷达信号设计

    通讯作者:

    李玉博, liyubo6316@ysu.edu.cn

  • 中图分类号: TN911.2

An Optimization Design Method for Zero-Correlation Zone Sequences Based on Newton’s Method

Funds: The National Natural Science Foundation of China(62471427), The S&T Program of HeBei (246Z0403G)
  • 摘要: 具有零相关区的序列集在无线通信以及雷达中具有重要的应用。然而,现有的序列集大都基于数学解析构造方法得到,其参数如序列长度和序列数目等受到一些限制,不能灵活设定,这限制了其在实际场景中的应用。因此,研究具有灵活参数的序列集构造方法成为一个有意义的课题。为得到更多灵活参数的序列集,该文利用牛顿优化方法来进行零相关区序列设计研究,具体提出了非周期零相关区互补序列集和非周期零相关区序列集的优化设计方法,得到的序列集参数可灵活调节。最后,通过互补峰值旁瓣水平(CPSL)和加权峰值旁瓣水平(WPSL)评估了序列集性能。
  • 图  1  互补集的非周期自相关水平

    图  2  不同优化方法下的非周期自相关旁瓣水平

    图  3  牛顿算法互补峰值旁瓣水平与迭代次数的关系

    图  4  改进-ITROX算法互补峰值旁瓣水平与迭代次数的关系

    图  5  非周期ZCZ序列集的自相关和互相关

    图  6  加权峰值旁瓣水平和迭代次数的关系

    1  基于牛顿法的ZCS优化算法

     输入:序列个数$M$,序列长度$N$,零相关区长度$Z$,迭代终止
     条件$\varepsilon $;
     输出:非周期零相关区互补集$(M,N,Z) - {\text{ZCS}}$;
     (1) 重复以下步骤
     (2) 随机初始化$\{ {{{\boldsymbol{\theta}} }_1},{{{\boldsymbol{\theta}} }_2}, \cdots ,{{{\boldsymbol{\theta}} }_M}\} $;
     (3) ${\text{For }}d = 0:\infty {\text{ do}}$
     (4)   根据式(8)计算$f({{{\boldsymbol{\theta}} }_1},{{{\boldsymbol{\theta}} }_2}, \cdots ,{{{\boldsymbol{\theta}} }_M})$;
     (5)   ${\text{If CPSL}} \le \varepsilon {\text{ then}}$
     (6)    返回${\boldsymbol{X}} = \{ {{\boldsymbol{x}}_1},{{\boldsymbol{x}}_2}, \cdots ,{{\boldsymbol{x}}_M}\} $,其中
          ${{\boldsymbol{x}}_i} = ({{{\mathrm{e}}}^{{{\mathrm{j}}}{{{\theta}} _{i,1}}}},{{\mathrm{{e}}}^{{{\mathrm{j}}}{{{\theta}} _{i,2}}}}, \cdots ,{{{\mathrm{e}}}^{{{\mathrm{j}}}{{{\theta}} _{i,N}}}})$;
     (7)   ${\text{End If}}$
     (8)   根据式(8)计算$f({{{\boldsymbol{\theta}} }_1},{{{\boldsymbol{\theta}} }_2}, \cdots ,{{{\boldsymbol{\theta}} }_M})$;
     (9)   根据式(9)计算$ J({{{\boldsymbol{\theta}} }_1},{{{\boldsymbol{\theta}} }_2}, \cdots ,{{{\boldsymbol{\theta}} }_M}) $;
     (10)  根据式(10)计算${\varPhi }({{{\boldsymbol{\theta}} }_1},{{{\boldsymbol{\theta}} }_2}, \cdots ,{{{\boldsymbol{\theta}} }_M})$;
     (11)  根据式(11)计算$\vartheta ({{{\boldsymbol{\theta}} }_1},{{{\boldsymbol{\theta}} }_2}, \cdots ,{{{\boldsymbol{\theta}} }_M})$;
     (12)  根据式(13)计算牛顿搜索方向${{\boldsymbol{v}}_{nt}}$;
     (13)  根据式(12)计算$ \{ {{\boldsymbol{\theta}} }_1^{k + 1},{{\boldsymbol{\theta}} }_2^{k + 1}, \cdots ,{{\boldsymbol{\theta}} }_M^{k + 1}\} $;
     (14)  步长设置为$\alpha = 1$;
     (15)  ${\text{For }}k = 0:{k_{\max }}{\text{ do}}$
     (16)   ${\text{If}}$式(15)成立${\text{then}}$
     (17)    ${\text{break;}}$
     (18)   ${\text{End If}}$
     (19)   $\alpha = \alpha /2$;
     (20)   根据式(12)计算$ \{ {{\boldsymbol{\theta}} }_1^{k + 1},{{\boldsymbol{\theta}} }_2^{k + 1}, \cdots ,{{\boldsymbol{\theta}} }_M^{k + 1}\} $;
     (21) ${\text{End For}}$
     (22)${\text{End For}}$
    下载: 导出CSV

    2  基于牛顿法的非周期ZCZ序列集优化算法

     输入:序列个数$M$,序列长度$N$,零相关区长度$Z$,迭代终止
     条件$\varepsilon $;
     重复以下步骤
     (1) 随机初始化$\{ {{{\boldsymbol{\theta}} }_1},{{{\boldsymbol{\theta}} }_2}, \cdots ,{{{\boldsymbol{\theta}} }_M}\} $,取值在$[0,2{\pi }]$均匀分布;
     (2) ${\text{For }}d = 0:\infty {\text{ do}}$
     (3) 第1部分优化序列集的互相关水平;
     (4)  $\{ {{{\boldsymbol{\theta}} }_i},{{{\boldsymbol{\theta}} }_j}\} ,1 \le i \le M,1 \le j \le M,i \ne j$;
     (5)  ${\text{For }}d = 0:\infty {\text{ do}}$
     (6)   根据式(20)计算$f({{{\boldsymbol{\theta}} }_i},{{{\boldsymbol{\theta}} }_j})$;
     (7)   ${\text{If max(}}\mathop {{\text{max}}}\limits_{i,j,i \ne j} |{\rho _{{{\boldsymbol{x}}_i},{{\boldsymbol{x}}_j}}}(\tau )|/N{\text{)}} \le \varepsilon {\text{ then}}$
     (8)    输出${{\boldsymbol{x}}_i} = ({{{\mathrm{e}}}^{{{\mathrm{j}}}{{{\theta}} _{i,1}}}},{{{\mathrm{e}}}^{{{\mathrm{j}}}{{{\theta}} _{i,2}}}}, \cdots ,{{{\mathrm{e}}}^{{{\mathrm{j}}}{{{\theta}} _{i,N}}}}) $,
          ${{\boldsymbol{x}}_j} = ({{{\mathrm{e}}}^{{{\mathrm{j}}}{{{\theta}} _{j,1}}}},{{{\mathrm{e}}}^{{{\mathrm{j}}}{{{\theta}} _{j,2}}}}, \cdots ,{{{\mathrm{e}}}^{{{\mathrm{j}}}{{{\theta}} _{j,N}}}})$;
     (9)   ${\text{End If}}$
     (10)  计算式(20)、式(9)、式(10)、式(11)、式(13)和式(12);
     (11)  ${\text{For }}k = 0:{k_{\max }}{\text{ do}}$
     (12)   计算式(15)确保优化过程的单调性;
     (13)   根据式(12)计算$\{ {{\boldsymbol{\theta}} }_i^{k + 1},{{\boldsymbol{\theta}} }_j^{k + 1}\} $;
     (14)  ${\text{End For}}$
     (15) ${\text{End For}}$
     (16) 第2部分优化序列集的自相关水平(见算法1);
     (17) 根据式(21)计算WPSL;
     (18) ${\text{If WPSL}} \le \varepsilon {\text{ then}}$
     (19)  返回${\boldsymbol{X}} = \{ {{\boldsymbol{x}}_1},{{\boldsymbol{x}}_2}, \cdots ,{{\boldsymbol{x}}_M}\} $,其中
         ${{\boldsymbol{x}}_i} = ({{{\mathrm{e}}}^{{{\mathrm{j}}}{{{\theta}} _{i,1}}}},{{{\mathrm{e}}}^{{{\mathrm{j}}}{{{\theta}} _{i,2}}}}, \cdots ,{{{\mathrm{e}}}^{{{\mathrm{j}}}{{{\theta}} _{i,N}}}})$;
     (20) ${\text{End If}}$
     (21) ${\text{End For}}$
    下载: 导出CSV
  • [1] PEZESHKI A, CALDERBANK A R, MORAN W, et al. Doppler resilient Golay complementary waveforms[J]. IEEE Transactions on Information Theory, 2008, 54(9): 4254–4266. doi: 10.1109/TIT.2008.928292.
    [2] GIRNYK M A and PETERSSON S O. Efficient cell-specific beamforming for large antenna arrays[J]. IEEE Transactions on Communications, 2021, 69(12): 8429–8442. doi: 10.1109/TCOMM.2021.3113755.
    [3] HUANG Wenjie, NAGHSH M M, LIN Ronghao, et al. Doppler sensitive discrete-phase sequence set design for MIMO radar[J]. IEEE Transactions on Aerospace and Electronic Systems, 2020, 56(6): 4209–4223. doi: 10.1109/TAES.2020.2988623.
    [4] PETERSSON S O and GIRNYK M A. Energy-efficient design of broad beams for massive MIMO systems[J]. IEEE Transactions on Vehicular Technology, 2022, 71(11): 11772–11785. doi: 10.1109/TVT.2022.3192245.
    [5] ZHOU Zhengchun, LIU Bing, SHEN Bingsheng, et al. Doppler-resilient waveform design in integrated MIMO radar-communication systems[J]. Science China Information Sciences, 2024, 67(1): 112301. doi: 10.1007/S11432-022-3733-2.
    [6] 王佳欢, 范平志, 时巧, 等. 一种具有多普勒容忍性的通感一体化波形设计[J]. 雷达学报, 2023, 12(2): 275–286. doi: 10.12000/JR22155.

    WANG Jiahuan, FAN Pingzhi, SHI Qiao, et al. Doppler resilient integrated sensing and communication waveforms design[J]. Journal of Radars, 2023, 12(2): 275–286. doi: 10.12000/JR22155.
    [7] LI Fengjie, JIANG Yi, DU Cheng, et al. Construction of Golay complementary matrices and its applications to MIMO omnidirectional transmission[J]. IEEE Transactions on Signal Processing, 2021, 69: 2100–2113. doi: 10.1109/TSP.2021.3067467.
    [8] MEN Xinyu and LI Yubo. Omnidirectional precoding designs based on 2-D Golay complementary array pairs for massive MIMO systems with fully-connected and partially-connected structures[J]. IEEE Transactions on Communications, 2024, 72(5): 3019–3034. doi: 10.1109/TCOMM.2024.3351749.
    [9] PENG Xiuping, WANG Yu, and LIU Zilong. New constructions of 2-D Golay complementary array sets with highly flexible array sizes for massive MIMO omni-directional transmission[J]. IEEE Signal Processing Letters, 2024, 31: 3129–3133. doi: 10.1109/LSP.2024.3490403.
    [10] ZHAO Youqi, PAI Chengyu, HUANG Zhenming, et al. Two-dimensional Golay complementary array sets with arbitrary lengths for omnidirectional MIMO transmission[J]. IEEE Transactions on Communications, 2024, 72(2): 1135–1145. doi: 10.1109/TCOMM.2023.3326498.
    [11] DAS S, BUDISIN S, MAJHI S, et al. A multiplier-free generator for polyphase complete complementary codes[J]. IEEE Transactions on Signal Processing, 2018, 66(5): 1184–1196. doi: 10.1109/TSP.2017.2780050.
    [12] ARASU K T, DING Cunsheng, HELLESETH T, et al. Almost difference sets and their sequences with optimal autocorrelation[J]. IEEE Transactions on Information Theory, 2001, 47(7): 2934–2943. doi: 10.1109/18.959271.
    [13] ADHIKARY A R, FENG Yanghe, ZHOU Zhengchun, et al. Asymptotically optimal and near-optimal aperiodic quasi-complementary sequence sets based on Florentine rectangles[J]. IEEE Transactions on Communications, 2022, 70(3): 1475–1485. doi: 10.1109/TCOMM.2021.3132364.
    [14] SOLTANALIAN M and STOICA P. Computational design of sequences with good correlation properties[J]. IEEE Transactions on Signal Processing, 2012, 60(5): 2180–2193. doi: 10.1109/TSP.2012.2186134.
    [15] SOLTANALIAN M, NAGHSH M M, and STOICA P. A fast algorithm for designing complementary sets of sequences[J]. Signal Processing, 2013, 93(7): 2096–2102. doi: 10.1016/j.sigpro.2013.02.008.
    [16] STOICA P, HE Hao, and LI Jian. New algorithms for designing unimodular sequences with good correlation properties[J]. IEEE Transactions on Signal Processing, 2009, 57(4): 1415–1425. doi: 10.1109/TSP.2009.2012562.
    [17] SONG Junxiao, BABU P, and PALOMAR D P. Sequence set design with good correlation properties via majorization-minimization[J]. IEEE Transactions on Signal Processing, 2016, 64(11): 2866–2879. doi: 10.1109/TSP.2016.2535312.
    [18] GU Zhi, ADHIKARY A R, ZHOU Zhengchun, et al. A computational design of unimodular complementary and Z-complementary sets[C]. 2023 IEEE International Symposium on Information Theory (ISIT), Taipei, China, 2023: 1419–1424. doi: 10.1109/ISIT54713.2023.10206582.
    [19] RAMEZANI P, GIRNYK M A, and BJÖRNSON E. On broad-beam reflection for dual-polarized RIS-assisted MIMO systems[J]. IEEE Transactions on Wireless Communications, 2025, 24(2): 1264–1277. doi: 10.1109/TWC.2024.3507182.
    [20] BADEN J M, O'DONNELL B, and SCHMIEDER L. Multiobjective sequence design via gradient descent methods[J]. IEEE Transactions on Aerospace and Electronic Systems, 2018, 54(3): 1237–1252. doi: 10.1109/TAES.2017.2780538.
    [21] ALAEE-KERAHROODI M, MODARRES-HASHEMI M, and NAGHSH M M. Designing sets of binary sequences for MIMO radar systems[J]. IEEE Transactions on Signal Processing, 2019, 67(13): 3347–3360. doi: 10.1109/TSP.2019.2914878.
    [22] RAEI E, ALAEE-KERAHROODI M BABU P, et al. Generalized waveform design for sidelobe reduction in MIMO radar systems[J]. Signal Processing, 2023, 206: 108914. doi: 10.1016/J.SIGPRO.2022.108914.
    [23] ZEBARDAST H, FARHANG M, and SHEIKHI A. Minimum PSL sequence set design for MIMO radars via manifold-based optimization[J]. IEEE Sensors Journal, 2024, 24(13): 20981–20988. doi: 10.1109/JSEN.2024.3398780.
  • 加载中
图(6) / 表(2)
计量
  • 文章访问数:  176
  • HTML全文浏览量:  65
  • PDF下载量:  36
  • 被引次数: 0
出版历程
  • 收稿日期:  2025-05-08
  • 修回日期:  2025-07-16
  • 网络出版日期:  2025-07-25

目录

    /

    返回文章
    返回