高级搜索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于注意力机制的轻量级双卷积手指静脉识别网络

赵冰艳 梁义怀 张中霞 张文政

赵冰艳, 梁义怀, 张中霞, 张文政. 基于注意力机制的轻量级双卷积手指静脉识别网络[J]. 电子与信息学报. doi: 10.11999/JEIT250380
引用本文: 赵冰艳, 梁义怀, 张中霞, 张文政. 基于注意力机制的轻量级双卷积手指静脉识别网络[J]. 电子与信息学报. doi: 10.11999/JEIT250380
ZHAO Bingyan, LIANG Yihuai, ZHANG Zhongxia, ZHANG Wenzheng. Lightweight Dual Convolutional Finger Vein Recognition Network Based on Attention Mechanism[J]. Journal of Electronics & Information Technology. doi: 10.11999/JEIT250380
Citation: ZHAO Bingyan, LIANG Yihuai, ZHANG Zhongxia, ZHANG Wenzheng. Lightweight Dual Convolutional Finger Vein Recognition Network Based on Attention Mechanism[J]. Journal of Electronics & Information Technology. doi: 10.11999/JEIT250380

基于注意力机制的轻量级双卷积手指静脉识别网络

doi: 10.11999/JEIT250380 cstr: 32379.14.JEIT250380
基金项目: 中央高校基本科研业务费(2682024CX031)
详细信息
    作者简介:

    赵冰艳:女,硕士生,研究方向为手指静脉图像识别

    梁义怀:男,讲师,研究方向为数据安全与隐私保护、群智感知、联邦学习

    张中霞:女,博士,研究方向为信息安全、图像处理

    张文政:男,高级工程师,研究方向为密码学理论和技术

    通讯作者:

    梁义怀 liangyh@swjtu.edu.cn

  • 中图分类号: TP389

Lightweight Dual Convolutional Finger Vein Recognition Network Based on Attention Mechanism

Funds: The Fundamental Research Funds for the Central Universities(2682024CX031)
  • 摘要: 基于深度学习的指静脉识别方法已广泛应用于生物特征识别领域,然而现有模型普遍存在复杂度与分类性能失衡的问题,难以在内存受限和计算资源稀缺环境下高效完成识别任务。针对上述问题,该文提出了一种融合注意力机制的轻量化双通道卷积神经网络模型。此模型设计有双分支协同架构,旨在分别提取核心特征与辅助特征,从而丰富特征集合并增强网络对远程依赖特征的捕捉能力。通过设计一种并行双重注意力机制,以促进融合特征间的信息交互,引导模型聚焦于高价值信息,学习更具区分度的特征表示。实验结果显示,此模型在USM、HKPU和SDUMLA三个公开数据集上的识别准确率分别达到99.70%、98.33%和98.27%,比现有先进方法分别提升2.34%、1.79%和2.03%,而参数量减少11.35%-60.19%,表明提出的双卷积模型实现了网络规模与识别准确率之间的有效平衡。
  • 图  1  手指静脉识别流程图和现有方法的问题

    图  2  ALDCNet算法整体结构

    图  3  DCFE模块结构

    图  4  矩形卷积和方形卷积作用下输出特征的热图

    图  5  PDA模块结构

    图  6  Grad-CAM热图

    图  7  两个公共数据集的损失曲线和准确率曲线

    图  8  混淆矩阵图

    表  1  不同卷积核组合在三个数据集上的识别准确率(%)

    矩形卷积核方形卷积核(USM)方形卷积核(HKPU)方形卷积核(SDUMLA)
    5×57×79×95×57×79×95×57×79×9
    1×399.4999.5999.3997.1497.6298.3397.6497.4897.80
    1×599.7099.3999.4997.3897.6298.1097.3297.1698.27
    1×799.2999.2998.7897.8697.8697.6297.4897.6497.80
    注:粗体表示所有方案中性能指标的最高值
    下载: 导出CSV

    表  2  与其他方法性能指标的对比(%)

    方法 Acc(USM) EER(USM) Acc(HKPU) EER(HKPU) Acc(SDUMLA) EER(SDUMLA)
    AlexNet[12] 97.26 0.10 86.90 3.99 92.45 1.10
    VGG16[13] 95.93 0.31 76.67 4.78 78.14 1.73
    Liu等人[14] 97.97 0.20 77.14 4.24 69.65 4.56
    LALBP[15] 79.47 73.10 76.89
    MMNBP[16] 83.29 75.16 80.00
    ViT-Cap[17] 98.33 0.28 96.18 1.66 93.79 1.30
    Lu等人[18] 91.76 2.46 90.98 3.89 94.12 0.94
    ALA Net[19] 97.74 0.34 97.86 0.32 94.50 0.53
    NLNet[20] 98.98 0.48 96.22 0.55 94.30 1.13
    ALDCNet 99.70 0.08 98.33 0.28 98.27 0.35
    下载: 导出CSV

    表  3  模型参数配置的对比

    方法 准确率(%) 卷积核数 操作大小 卷积层数 参数量(M) 时间(ms)
    AlexNet[12] 97.26 64,192,384,256×2 11×11,5×5,3×3,3×3 5 2.454 1.01
    VGG16[13] 95.93 64×2,128×2,256×3,512×3,512×3 3×3,3×3,3×3,3×3,3×3 13 14.714 3.00
    Liu等人[14] 97.97 64,64,64,64,64 5×5,5×5,5×5,5×5,5×5 5 0.412 1.22
    ALDCNet 99.70 32×2,32×3,32×3,32×3,64 3×3,1×5,5×5,3×3,3×3 12 0.164 1.66
    下载: 导出CSV

    表  4  消融实验(%)

    模型 Acc (USM) EER (USM) Acc (HKPU) EER (HKPU) Acc (SDUMLA) EER (SDUMLA)
    无PDA 99.09 0.20 97.38 0.52 96.54 0.47
    无DCFE-RC 99.29 0.10 97.38 0.48 96.69 0.64
    无DCFE-SC 99.39 0.10 97.86 0.48 97.01 0.63
    ALDCNet 99.70 0.08 98.33 0.28 98.27 0.35
    下载: 导出CSV
  • [1] LI Yantao, FAN Chao, QIN Huafeng, et al. Deep reinforcement learning-based feature extraction and encoding for finger-vein verification[J]. IEEE Transactions on Emerging Topics in Computational Intelligence, 2025, 9(1): 522–536. doi: 10.1109/TETCI.2024.3398022.
    [2] TAN Xiao. Advanced feature extraction algorithms for deep learning in image recognition[C]. 2024 International Conference on Power, Electrical Engineering, Electronics and Control (PEEEC), Athens, Greece, 2024: 1055–1060. doi: 10.1109/PEEEC63877.2024.00195.
    [3] HUANG Houjun, LIU Shilei, ZHENG He, et al. DeepVein: Novel finger vein verification methods based on deep convolutional neural networks[C]. 2017 IEEE International Conference on Identity, Security and Behavior Analysis (ISBA), New Delhi, India, 2017: 1–8. doi: 10.1109/ISBA.2017.7947683.
    [4] 何鑫, 陈迅. 基于改进卷积神经网络的指静脉识别[J]. 计算机工程与设计, 2019, 40(2): 562–566. doi: 10.16208/j.issn1000-7024.2019.02.046.

    HE Xin and CHEN Xun. Finger vein recognition based on improved convolution neural network[J]. Computer Engineering and Design, 2019, 40(2): 562–566. doi: 10.16208/j.issn1000-7024.2019.02.046.
    [5] HU Hui, KANG Wenxiong, LU Yuting, et al. FV-Net: Learning a finger-vein feature representation based on a CNN[C]. 2018 24th International Conference on Pattern Recognition (ICPR), Beijing, China, 2018: 3489–3494. doi: 10.1109/ICPR.2018.8546007.
    [6] REN Hengyi, SUN Lijuan, REN Jinting, et al. FV-DDC: A novel finger-vein recognition model with deformation detection and correction[J]. Biomedical Signal Processing and Control, 2025, 100: 107098. doi: 10.1016/j.bspc.2024.107098.
    [7] BOUCHERIT I, ZMIRLI M O, HENTABLI H, et al. Finger vein identification using deeply-fused convolutional neural network[J]. Journal of King Saud University-Computer and Information Sciences, 2022, 34(3): 646–656. doi: 10.1016/j.jksuci.2020.04.002.
    [8] WANG Kaixuan, CHEN Guanghua, and CHU Hongjia. Finger vein recognition based on multi-receptive field bilinear convolutional neural network[J]. IEEE Signal Processing Letters, 2021, 28: 1590–1594. doi: 10.1109/LSP.2021.3094998.
    [9] CHAI Tingting, LI Jiahui, PRASAD S, et al. Shape-driven lightweight CNN for finger-vein biometrics[J]. Journal of Information Security and Applications, 2022, 67: 103211. doi: 10.1016/j.jisa.2022.103211.
    [10] MOHD ASAARI M S, SUANDI S A, and ROSDI B A. Fusion of band limited phase only correlation and width centroid contour distance for finger based biometrics[J]. Expert Systems with Applications, 2014, 41(7): 3367–3382. doi: 10.1016/j.eswa.2013.11.033.
    [11] KUMAR A and ZHOU Yingbo. Human identification using finger images[J]. IEEE Transactions on Image Processing, 2012, 21(4): 2228–2244. doi: 10.1109/TIP.2011.2171697.
    [12] FAIRUZ S, HABAEBI M H, and ELSHEIKH E M A. Finger vein identification based on transfer learning of AlexNet[C]. 2018 7th International Conference on Computer and Communication Engineering, Kuala Lumpur, Malaysia, 2018: 465–469. doi: 10.1109/ICCCE.2018.8539256.
    [13] NADIR C, ATTALLAH B, and BRIK Y. Finger vein based CNN algorithms for human recognition[C]. 2022 International Conference of Advanced Technology in Electronic and Electrical Engineering, M'sila, Algeria, 2022: 1–6. doi: 10.1109/ICATEEE57445.2022.10093105.
    [14] LIU Wenjie, LI Weijun, SUN Linjun, et al. Finger vein recognition based on deep learning[C]. 2017 12th IEEE Conference on Industrial Electronics and Applications (ICIEA), Siem Reap, Cambodia, 2017: 205–210. doi: 10.1109/ICIEA.2017.8282842.
    [15] 黄艳国, 杨训根, 周满国. 基于感兴趣区域的改进型LBP手指静脉识别[J]. 传感器与微系统, 2023, 42(4): 143–147. doi: 10.13873/J.1000-9787(2023)04-0143-05.

    HUANG Yanguo, YANG Xungen, and ZHOU Manguo. Improved LBP finger vein recognition based on RoI[J]. Transducer and Microsystem Technologies, 2023, 42(4): 143–147. doi: 10.13873/J.1000-9787(2023)04-0143-05.
    [16] 付华, 李涛, 司南楠. 基于MMNBP的手指静脉识别方法[J]. 传感器与微系统, 2019, 38(5): 45–48. doi: 10.13873/J.1000-9787(2019)05-0045-04.

    FU Hua, LI Tao, and SI Nannan. Finger vein recognition method based on MMNBP[J]. Transducer and Microsystem Technologies, 2019, 38(5): 45–48. doi: 10.13873/J.1000-9787(2019)05-0045-04.
    [17] LI Yupeng, LU Huimin, WANG Yifan, et al. ViT-Cap: A novel vision transformer-based capsule network model for finger vein recognition[J]. Applied Sciences, 2022, 12(20): 10364. doi: 10.3390/APP122010364.
    [18] LU Zhiying, WU Runhao, and ZHANG Jianfeng. Finger-vein feature extraction method based on vision transformer[J]. Journal of Electronic Imaging, 2022, 31(4): 043010. doi: 10.1117/1.JEI.31.4.043010.
    [19] HUANG Yiwei, MA Hui, and WANG Mingyang. Axially enhanced local attention network for finger vein recognition[J]. IEEE Transactions on Instrumentation and Measurement, 2023, 72: 5020210. doi: 10.1109/TIM.2023.3291785.
    [20] GUO Zishuo, MA Hui, and LIU Junbo. NLNet: A narrow-channel lightweight network for finger multimodal recognition[J]. Digital Signal Processing, 2024, 150: 104517. doi: 10.1016/j.dsp.2024.104517.
  • 加载中
图(8) / 表(4)
计量
  • 文章访问数:  57
  • HTML全文浏览量:  30
  • PDF下载量:  2
  • 被引次数: 0
出版历程
  • 修回日期:  2026-01-06
  • 录用日期:  2026-01-06
  • 网络出版日期:  2026-01-15

目录

    /

    返回文章
    返回