高级搜索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于自检测修复的比特配置物理不可克隆函数电路设计

徐梦凡 张跃军 刘天翔 潘钰

徐梦凡, 张跃军, 刘天翔, 潘钰. 基于自检测修复的比特配置物理不可克隆函数电路设计[J]. 电子与信息学报. doi: 10.11999/JEIT250359
引用本文: 徐梦凡, 张跃军, 刘天翔, 潘钰. 基于自检测修复的比特配置物理不可克隆函数电路设计[J]. 电子与信息学报. doi: 10.11999/JEIT250359
XU Mengfan, ZHANG Yuejun, LIU Tianxiang, PAN Yu. Bit-configurable Physical Unclonable Function Circuit Based on Self-detection and Repair Method[J]. Journal of Electronics & Information Technology. doi: 10.11999/JEIT250359
Citation: XU Mengfan, ZHANG Yuejun, LIU Tianxiang, PAN Yu. Bit-configurable Physical Unclonable Function Circuit Based on Self-detection and Repair Method[J]. Journal of Electronics & Information Technology. doi: 10.11999/JEIT250359

基于自检测修复的比特配置物理不可克隆函数电路设计

doi: 10.11999/JEIT250359 cstr: 32379.14.JEIT250359
基金项目: 浙江省“尖兵领雁+X”科技计划(2025C01063),国家自然科学基金(62474100, 62174121, 62134002),宁波市科创甬江2035重点研发计划(2024Z139),慈溪市重点研发专项(CZ2025006)
详细信息
    作者简介:

    徐梦凡:女,博士生,研究方向为高可靠物理不可克隆电路设计及实现

    张跃军:男,教授,研究方向为低功耗、高信息密度集成电路理论和设计

    刘天翔:男,硕士,研究方向为集成电路设计、智能装备系统开发与优化

    潘钰:女,硕士生,研究方向为面向FPGA的定制化可编程逻辑电路设计

    通讯作者:

    张跃军 zhangyuejun@nbu.edu.cn

  • 中图分类号: TN43

Bit-configurable Physical Unclonable Function Circuit Based on Self-detection and Repair Method

Funds: “Vanguard Geese Leading and X” Science and Technology Program of Zhejiang Province (2025C01063), The National Natural Science Foundation of China (62474100, 62174121, 62134002), The Key R&D Program of Ningbo Science and Technology Yongjiang 2035 (2024Z139), The Key R&D Program of Cixi(CZ2025006)
  • 摘要: 物理不可克隆函数(PUF)作为硬件安全原语,为资源受限的物联网设备提供低成本的密钥生成与设备身份认证。然而,PUF电路的可靠性问题已经成为大规模部署的瓶颈。为此,该文提出一种基于自检测修复的比特配置高可靠PUF电路方案。该方案首先研究电桥失衡效应和亚阈值电流特性,利用亚阈值指数级电流特性放大随机工艺偏差,提升输出熵源随机性。其次,构建可配置位单元拓扑结构,结合比特配置策略,在不增加额外硬件开销的情况下,可灵活切换电桥PUF与分压PUF模式。最后,提出一种自检测与修复机制以提升PUF电路的可靠性,并结合掩蔽操作进一步降低误码率(BER)。在TSMC 28 nm工艺下实现64×64位PUF电路设计,全定制版图面积为3283.3 μm2。实验结果表明,电桥PUF和分压PUF唯一性和自相关性分别为50.03%/50.08%和0.027 7/0.027 3,且通过NIST800-22随机性测试。此外,在0 °C~80 °C的温度范围和0.81~0.99 V的电压范围内,对29%的不稳定位进行修复或掩蔽处理,最终误码率为1.62E–9。
  • 图  1  惠斯通电桥结构

    图  2  NMOS电桥结构及I-V特性分析

    图  3  PMOS电桥结构及I-V特性分析

    图  4  分压PUF电路结构及I-V特性分析

    图  5  电桥模式

    图  6  分压模式

    图  7  自检测电路

    图  8  模式选择电路

    图  9  自检测修复与掩蔽操作流程

    图  10  整体电路顶层架构

    图  11  电路整体版图和PUF单元版图

    图  12  自检测修复与掩蔽操作仿真波形

    图  13  电桥PUF片间汉明距离和自相关测试

    图  14  分压PUF片间汉明距离和自相关测试

    图  15  不同温度和电压下PUF原生误码率

    图  16  不同温度和电压下PUF误码修复比率

    表  1  NIST随机性测试

    测试项目比特流长度P-Value IP-Value II通过/不通过
    近似熵1 0240.999 830.795 61通过
    块内频率1 0240.877 290.839 12通过
    累加和1 0240.741 400.834 10通过
    离散傅里叶变换1 0240.327 660.427 92通过
    频率1 0240.592 160.521 88通过
    线性复杂度1 0240.561 340.638 17通过
    块内最长游程1 0240.775 820.793 70通过
    非重叠模块匹配1 0240.718 990.460 11通过
    2元矩阵秩1 0240.538 690.324 15通过
    序列1 0240.693 720.586 71通过
    游程1 0240.530 800.443 76通过
    下载: 导出CSV

    表  2  与相关文献性能对比

    INV PUF[15] SRAM PUF[17] NOR PUF[19] NAND PUF[20] 本文
    工艺尺寸(nm) 65 65 65 14 28
    单位面积(F2/bit) 594 3 001 266 1 065 1 006
    温度范围(°C) –40~125 –10~85 –20~125 25~110 0~80
    电压范围(V) 0.7~1.4 0.8~1.2 0.8~1.2 0.55~75 0.8~1
    原生不稳定位(%) 4.2 19.6 2.74 2.55 5.4/8.2
    稳定前误码率(%) 4.2 2.24 4.64 1.46 -
    稳定后误码率(%e) <5.99E–7 <1.4E–9 <4.88E–8 - <1.62E–9
    掩蔽率(%) 31/35 59 - 20 29
    唯一性(%) 0.499 5 - 0.499/0.5 0.497 8 0.503/0.507
    芯片能耗(fJ/bit) 0.057 15.39 0.063 4 0.104
    下载: 导出CSV
  • [1] AL-MEER A and AL-KUWARI S. Physical Unclonable Functions (PUF) for IoT devices[J]. ACM Computing Surveys, 2023, 55(14s): 314. doi: 10.1145/3591464.
    [2] XU Chongyao, ZHANG Litao, MAK P I, et al. Fully symmetrical obfuscated interconnection and weak-PUF-assisted challenge obfuscation strong PUFs against machine-learning modeling attacks[J]. IEEE Transactions on Information Forensics and Security, 2024, 19: 3927–3942. doi: 10.1109/tifs.2024.3372801.
    [3] 夏卓群, 苏潮, 徐梓桑, 等. 基于物理不可克隆函数的轻量级可证明安全车联网认证协议[J]. 电子与信息学报, 2024, 46(9): 3788–3796. doi: 10.11999/jeit240141.

    XIA Zhuoqun, SU Chao, XU Zisang, et al. A lightweight and provably secure authentication protocol for internet of vehicles using physical unclonable function[J]. Journal of Electronics & Information Technology, 2024, 46(9): 3788–3796. doi: 10.11999/jeit240141.
    [4] ZHOU Ziyu, LI Gang, ZHANG Yuejun, et al. A strong PUF-based security protocol to protect AI model parameters against privacy information leakage[J]. IEEE Internet of Things Journal, 2025, 12(12): 20815–20827. doi: 10.1109/jiot.2025.3544555.
    [5] CHIU Y C, KHWA W S, YANG C S, et al. A CMOS-integrated spintronic compute-in-memory macro for secure AI edge devices[J]. Nature Electronics, 2023, 6(7): 534–543. doi: 10.1038/s41928-023-00994-0.
    [6] WANG Ziyu, WU Yuting, PARK Y, et al. Safe, secure and trustworthy compute-in-memory accelerators[J]. Nature Electronics, 2024, 7(12): 1086–1097. doi: 10.1038/s41928-024-01312-y.
    [7] SHAO Hanyong, FU Boyi, YANG Jinghao, et al. IMCE: An in-memory computing and encrypting hardware architecture for robust edge security[C]. 2024 Design, Automation & Test in Europe Conference & Exhibition (DATE), Valencia, Spain, 2024: 1–6. doi: 10.23919/DATE58400.2024.10546703.
    [8] HUANG Shanshi, JIANG Hongwu, PENG Xiaochen, et al. Secure XOR-CIM engine: Compute-in-memory SRAM architecture with embedded XOR encryption[J]. IEEE Transactions on Very Large Scale Integration (VLSI) Systems, 2021, 29(12): 2027–2039. doi: 10.1109/tvlsi.2021.3120296.
    [9] LEE J, KIM M, JEONG M, et al. A 20F2/bit current-integration-based differential nand-structured PUF for stable and V/T variation-tolerant low-cost IoT security[J]. IEEE Journal of Solid-State Circuits, 2022, 57(10): 2957–2968. doi: 10.1109/jssc.2022.3192903.
    [10] LIU Kunyang, CHEN Xinpeng, PU Hongliang, et al. A 0.5-V hybrid SRAM physically unclonable function using hot carrier injection burn-in for stability reinforcement[J]. IEEE Journal of Solid-State Circuits, 2021, 56(7): 2193–2204. doi: 10.1109/jssc.2020.3035207.
    [11] KARPINSKYY B, LEE Y, CHOI Y, et al. 8.7 physically unclonable function for secure key generation with a key error rate of 2E-38 in 45nm smart-card chips[C]. 2016 IEEE International Solid-State Circuits Conference (ISSCC), San Francisco, USA, 2016: 158–160. doi: 10.1109/isscc.2016.7417955.
    [12] TANEJA S and ALIOTO M. PUF architecture with run-time adaptation for resilient and energy-efficient key generation via sensor fusion[J]. IEEE Journal of Solid-State Circuits, 2021, 56(7): 2182–2192. doi: 10.1109/jssc.2021.3050959.
    [13] CHUANG K H, BURY E, DEGRAEVE R, et al. A physically unclonable function using soft oxide breakdown featuring 0% native BER and 51.8 fJ/bit in 40-nm CMOS[J]. IEEE Journal of Solid-State Circuits, 2019, 54(10): 2765–2776. doi: 10.1109/jssc.2019.2920714.
    [14] SARAZA-CANFLANCA P, FODOR F, DIAZ-FORTUNY J, et al. Unveiling the vulnerability of oxide-breakdown-based PUF[J]. IEEE Electron Device Letters, 2024, 45(5): 750–753. doi: 10.1109/led.2024.3369860.
    [15] HE Yan, LI Dai, YU Zhanghao, et al. ASCH-PUF: A “Zero” bit error rate CMOS physically unclonable function with dual-mode low-cost stabilization[J]. IEEE Journal of Solid-State Circuits, 2023, 58(7): 2087–2097. doi: 10.1109/jssc.2022.3233373.
    [16] LIU Kunyang, MIN Yue, YANG Xuan, et al. A 373-F2 0.21%-native-BER EE SRAM physically unclonable function with 2-D power-gated bit cells and VSS bias-based dark-bit detection[J]. IEEE Journal of Solid-State Circuits, 2020, 55(6): 1719–1732. doi: 10.1109/jssc.2019.2963002.
    [17] SHIFMAN Y, MILLER A, KEREN O, et al. An SRAM-based PUF with a capacitive digital preselection for a 1E-9 key error probability[J]. IEEE Transactions on Circuits and Systems I: Regular Papers, 2020, 67(12): 4855–4868. doi: 10.1109/tcsi.2020.2996772.
    [18] VATALARO M, DE ROSE R, LANUZZA M, et al. Static CMOS physically unclonable function based on 4T voltage divider with 0.6%–1.5% bit instability at 0.4–1.8 V operation in 180 nm[J]. IEEE Journal of Solid-State Circuits, 2022, 57(8): 2509–2520. doi: 10.1109/jssc.2022.3151229.
    [19] ZHANG Haoyi, SONG Jiahao, LUO Haoyang, et al. A 266F2 ultra stable differential NOR-structured physically unclonable function with <6×10–9 bit error rate through efficient redundancy strategy[J]. IEEE Transactions on Circuits and Systems II: Express Briefs, 2024, 71(12): 4979–4983. doi: 10.1109/tcsii.2024.3433543.
    [20] SATPATHY S, MATHEW S K, SURESH V, et al. A 4-fJ/b delay-hardened physically unclonable function circuit with selective bit destabilization in 14-nm trigate CMOS[J]. IEEE Journal of Solid-State Circuits, 2017, 52(4): 940–949. doi: 10.1109/jssc.2016.2636859.
  • 加载中
图(16) / 表(2)
计量
  • 文章访问数:  120
  • HTML全文浏览量:  67
  • PDF下载量:  14
  • 被引次数: 0
出版历程
  • 收稿日期:  2025-05-06
  • 修回日期:  2025-07-28
  • 网络出版日期:  2025-08-04

目录

    /

    返回文章
    返回