高级搜索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

面向实时电力系统仿真的可扩展中央处理器-现场可编程门阵列异构集群

杨航宇 汤勇明 刘济源 曹阳 邹德虎 许明旺 袁晓冬 韩华春 顾伟 李鹤

杨航宇, 汤勇明, 刘济源, 曹阳, 邹德虎, 许明旺, 袁晓冬, 韩华春, 顾伟, 李鹤. 面向实时电力系统仿真的可扩展中央处理器-现场可编程门阵列异构集群[J]. 电子与信息学报. doi: 10.11999/JEIT250355
引用本文: 杨航宇, 汤勇明, 刘济源, 曹阳, 邹德虎, 许明旺, 袁晓冬, 韩华春, 顾伟, 李鹤. 面向实时电力系统仿真的可扩展中央处理器-现场可编程门阵列异构集群[J]. 电子与信息学报. doi: 10.11999/JEIT250355
YANG Hangyu, TANG Yongming, LIU Jiyuan, CAO Yang, ZOU Dehu, XU Mingwang, YUAN Xiaodong, HAN Huachun, GU Wei, LI He. A Scalable CPU–FPGA Heterogeneous Cluster for Real-time Power System Simulation[J]. Journal of Electronics & Information Technology. doi: 10.11999/JEIT250355
Citation: YANG Hangyu, TANG Yongming, LIU Jiyuan, CAO Yang, ZOU Dehu, XU Mingwang, YUAN Xiaodong, HAN Huachun, GU Wei, LI He. A Scalable CPU–FPGA Heterogeneous Cluster for Real-time Power System Simulation[J]. Journal of Electronics & Information Technology. doi: 10.11999/JEIT250355

面向实时电力系统仿真的可扩展中央处理器-现场可编程门阵列异构集群

doi: 10.11999/JEIT250355 cstr: 32379.14.JEIT250355
基金项目: 国家电网有限公司总部科技项目(5400-202318547A-3-2-ZN)
详细信息
    作者简介:

    杨航宇:男,硕士生,研究方向为FPGA加速器、高性能计算

    汤勇明:男,教授,研究方向为FPGA加速器、视频图像处理

    刘济源:男,博士生,研究方向为FPGA加速器、高性能计算

    曹阳:男,博士生,研究方向为电力系统建模、控制与实时仿真

    邹德虎:男,博士生,研究方向为电力系统建模、控制与实时仿真

    许明旺:男,博士生,研究方向为电力系统建模、控制与实时仿真

    袁晓冬:男,研究员级高级工程师,研究方向为电力系统建模、控制与仿真

    韩华春:女,正高级工程师,研究方向为电力系统建模、控制与仿真

    顾伟:男,教授,研究方向为微电网与分布式能源系统,电力系统建模、控制与实时仿真

    李鹤:男,教授,研究方向为FPGA开发和系统优化、量子计算电路与系统、量子通信系统

    通讯作者:

    李鹤 helix@seu.edu.cn

  • 中图分类号: TN409; TN911.7

A Scalable CPU–FPGA Heterogeneous Cluster for Real-time Power System Simulation

Funds: The State Grid Corporation of China Headquarters Science and Technology Project (5400-202318547A-3-2-ZN)
  • 摘要: 高频开关器件的大量接入,以及可再生能源与电压源型变流器(VSCs)的深度融合,使电力系统仿真面临微秒级暂态分析和亚微秒步长仿真的挑战。现有仿真器在应对包含数百个电力电子开关的系统时,普遍存在计算扩展性不足、通信延迟偏高的问题。为此,该文提出一种面向实时电力系统仿真的中央处理器-现场可编程门阵列(CPU-FPGA)异构集群架构,能够在1 μs步长下完成对480个开关器件构成的新能源系统的实时仿真。该系统主要包含3项核心创新:(1)提出基于时间步长解耦的计算负载感知调度策略,实现4片FPGA的并行计算调度;(2)结合混合精度量化与矩阵-向量重组技术,相较传统定点方法,在400 ns计算窗口内实现资源占用大幅下降,查找表(LUT)、触发器(F)与数字信号处理单元(DSP)分别降低32.0%, 24.2%与43.8%;(3)基于数据平面开发工具包(DPDK)设计零拷贝通信机制,实现29 μs的端到端通信延迟。实验验证表明,该系统验证了异构集群架构在大规模高频电力系统仿真中的有效性,并具备良好的扩展性与工程应用潜力。
  • 图  1  带高频VSC的风电交流-直流系统

    图  2  子系统间交互关系

    图  3  面向计算资源和延迟优化的MVM重组方法

    图  4  CPU-FPGA数据交互及流水线优化设计

    图  5  CPU-FPGA集群仿真系统实物连接及运行界面

    图  6  仿真运行时序图

    表  1  不同FPGA电网实时仿真加速器的性能对比

    L/C[25] G-ADC[26] SNP[10] On-off[26] MNA[27] IEM[16] 本文 本文 本文 本文
    年份 2019 2023 2019 2023 2023 2024 2025 2025 2025 2025
    VSC规模 1 1 1 1 1 1 1 1 20 14
    开关数量 6 6 6 6 6 6 6 6 120 84
    芯片型号 7K325T 7K325T 7V485T KU060 7V485T 7K325T KU060 KU060 KU060 PG3T1300
    仿真架构 FPGA FPGA FPGA FPGA FPGA FPGA CPU-FPGA CPU-FPGA CPU-FPGA CPU-FPGA
    运行频率(MHz) - - 175 - - 100 100 100 100 100
    查找表 48 374 50 734 142 296 16 773 16 988 23 731 11 891 8 086 196 701 173 623
    触发器 51 874 53 350 147 317 NA 16 024 15 753 21 237 16 084 325 505 326 389
    块内存 91 91 258 60 NA 31 3 3 60 24
    DSP/APM 157 211 361 33 468 128 256 144 2 760 3 124
    延迟(ns) 463 475 800 1000 100 500 400 400 400 400
    误差(%) >10 >5 5 1 NA NA 0.7 0.9 0.9 0.9
    量化方法 定点 定点 定点 定点 定点 定点 定点 混合量化 混合量化 混合量化
    下载: 导出CSV
  • [1] CHAUHAN S and TUMMURU N R. An improvised modulation and control approach for dual active bridge DC–DC converter system[J]. IEEE Transactions on Industrial Electronics, 2024, 71(4): 3572–3582. doi: 10.1109/TIE.2023.3273248.
    [2] SPÍN-SARZOSA D, PALMA-BEHNKE R, CAÑIZARES C A, et al. Microgrid modeling for stability analysis[J]. IEEE Transactions on Smart Grid, 2024, 15(3): 2459–2479. doi: 10.1109/TSG.2023.3326063.
    [3] PATRA S and SINGHA A K. An event-driven sampling mechanism for digital average current-mode controlled boost converter[J]. IEEE Transactions on Circuits and Systems II: Express Briefs, 2024, 71(3): 1456–1460. doi: 10.1109/TCSII.2023.3321890.
    [4] ZHENG Jiain, ZENG Yangbin, ZHAO Zhengming, et al. A semi-implicit parallel leapfrog solver with half-step sampling technique for FPGA-based real-time HIL simulation of power converters[J]. IEEE Transactions on Industrial Electronics, 2024, 71(3): 2454–2464. doi: 10.1109/TIE.2023.3265042.
    [5] XU Zhenyu, YU Miaoxiang, CAI J, et al. A novel FPGA-based circuit simulator for accelerating reinforcement learning-based design of power converters[C]. 2023 IEEE 34th International Conference on Application-specific Systems, Architectures and Processors (ASAP), Porto, Portugal, 2023: 1–9. doi: 10.1109/ASAP57973.2023.00013.
    [6] CHEN Zibo and HUANG A Q. High performance SiC power module based on repackaging of discrete SiC devices[J]. IEEE Transactions on Power Electronics, 2023, 38(8): 9306–9310. doi: 10.1109/TPEL.2023.3263466.
    [7] JOLLY N and MALLIK A. Parasitic mismatch mitigation for fast switching modular power semiconductor devices[J]. IEEE Transactions on Circuits and Systems I: Regular Papers, 2024, 71(1): 485–498. doi: 10.1109/TCSI.2023.3316208.
    [8] DEBNATH S and CHOI J. Electromagnetic transient (EMT) simulation algorithms for evaluation of large-scale extreme fast charging systems (T& D models)[J]. IEEE Transactions on Power Systems, 2023, 38(5): 4069–4079. doi: 10.1109/TPWRS.2022.3212639.
    [9] GROBE J, WEIHS L, HANHART M, et al. Monolithic integration of a 400V GaN half-bridge converter with output voltage regulation[J]. IEEE Transactions on Circuits and Systems II: Express Briefs, 2024, 71(10): 4591–4595. doi: 10.1109/TCSII.2024.3398783.
    [10] MIRZAHOSSEINI R and IRAVANI R. Small time-step FPGA-based real-time simulation of power systems including multiple converters[J]. IEEE Transactions on Power Delivery, 2019, 34(6): 2089–2099. doi: 10.1109/TPWRD.2019.2933610.
    [11] BIEBER L, WANG Liwei, JATSKEVICH J, et al. Universal equivalent model for real-time CPU/FPGA co-simulation of hybrid cascaded multilevel converters[J]. IEEE Access, 2023, 11: 4228–4241. doi: 10.1109/ACCESS.2023.3235272.
    [12] DONG Zerui, GREGOIRE L A, VIPIN V N, et al. Real-time implementation of a dual-active-bridge based multi-level photovoltaic converter[C]. 2021 IEEE 12th International Symposium on Power Electronics for Distributed Generation Systems (PEDG), Chicago, USA, 2021: 1–6. doi: 10.1109/PEDG51384.2021.9494236.
    [13] XU Zhenyu, YU Miaoxiang, CAI J, et al. A finite-difference time-domain (FDTD) solver with linearly scalable performance in an FPGA cluster[C]. 2023 IEEE International Conference on Cluster Computing (CLUSTER), Santa Fe, USA, 2023: 307–317. doi: 10.1109/CLUSTER52292.2023.00033.
    [14] LIAO Haohao, ELMOHR M A, DONG Xuan, et al. TurboHE: Accelerating Fully Homomorphic Encryption using FPGA clusters[C]. 2023 IEEE International Parallel and Distributed Processing Symposium (IPDPS), St. Petersburg, USA, 2023: 788–797. doi: 10.1109/IPDPS54959.2023.00084.
    [15] KOZAK J P, ZHANG Ruizhe, PORTER M, et al. Stability, reliability, and robustness of GaN power devices: A review[J]. IEEE Transactions on Power Electronics, 2023, 38(7): 8442–8471. doi: 10.1109/TPEL.2023.3266365.
    [16] WANG Can, WANG Qinsheng, WENG Haowen, et al. A modified algorithm for the L/C-based switch model of power converters in real-time simulation based on FPGA[J]. IEEE Transactions on Industry Applications, 2024, 60(5): 7030–7037. doi: 10.1109/TIA.2024.3407031.
    [17] LI Zirun, XU Jin, WANG Keyou, et al. An FPGA-based hierarchical parallel real-time simulation method for cascaded solid-state transformer[J]. IEEE Transactions on Industrial Electronics, 2023, 70(4): 3847–3856. doi: 10.1109/TIE.2022.3181408.
    [18] BAI Hao, LIU Chen, RATHORE A K, et al. An FPGA-based IGBT behavioral model with high transient resolution for real-time simulation of power electronic circuits[J]. IEEE Transactions on Industrial Electronics, 2019, 66(8): 6581–6591. doi: 10.1109/TIE.2018.2870354.
    [19] XU Jin, WANG Keyou, WU Pan, et al. FPGA-based submicrosecond-level real-time simulation of solid-state transformer with a switching frequency of 50 kHz[J]. IEEE Journal of Emerging and Selected Topics in Power Electronics, 2021, 9(4): 4212–4224. doi: 10.1109/JESTPE.2020.3037233.
    [20] LI Zirun, XU Jin, WANG Keyou, et al. A discrete small-step synthesis real-time simulation method for power converters[J]. IEEE Transactions on Industrial Electronics, 2022, 69(4): 3667–3676. doi: 10.1109/TIE.2021.3076702.
    [21] BLANCHETTE H F, OULD-BACHIR T, and DAVID J P. A state-space modeling approach for the FPGA-based real-time simulation of high switching frequency power converters[J]. IEEE Transactions on Industrial Electronics, 2012, 59(12): 4555–4567. doi: 10.1109/TIE.2011.2182021.
    [22] GAO Shilin, CHEN Ying, SONG Yankan, et al. An efficient half-bridge MMC model for EMTP-type simulation based on hybrid numerical integration[J]. IEEE Transactions on Power Systems, 2024, 39(1): 1162–1177. doi: 10.1109/TPWRS.2023.3262584.
    [23] 曹阳, 顾伟, 柳伟, 等. 基于交叉初始化的换流器参数化恒导纳模型[J]. 中国电机工程学报, 2021, 41(10): 3518–3527. doi: 10.13334/j.0258-8013.pcsee.201045.

    CAO Yang, GU Wei, LIU Wei, et al. A parameterized fixed-admittance model of converters based on cross initialization[J]. Proceedings of the CSEE, 2021, 41(10): 3518–3527. doi: 10.13334/j.0258-8013.pcsee.201045.
    [24] 紫光同创. 紫光同创官网[EB/OL]. https: //www. pangomicro. com/, 2025. PANGO Microelectronics. PANGO Microelectronics Official Website[EB/OL]. https://www.pangomicro.com/, 2025.
    [25] WANG Keyou, XU Jin, LI Guojie, et al. A generalized associated discrete circuit model of power converters in real-time simulation[J]. IEEE Transactions on Power Electronics, 2019, 34(3): 2220–2233. doi: 10.1109/TPEL.2018.2845658.
    [26] FAN Xinran, LIU Sijia, JIANG Chengdong, et al. VSC converter real-time simulation modeling method research and FPGA implementation[C]. 2023 Panda Forum on Power and Energy (PandaFPE), Chengdu, China, 2023: 466–471. doi: 10.1109/PandaFPE57779.2023.10140437.
    [27] ZHAO Fuhai, DU Jiang, DENG Yunkai, et al. An adaptive word-length selection method to optimize hardware resources for FPGA-based real-time simulation of power converters[J]. IEEE Access, 2023, 11: 122980–122990. doi: 10.1109/ACCESS.2023.3328919.
  • 加载中
图(6) / 表(1)
计量
  • 文章访问数:  215
  • HTML全文浏览量:  124
  • PDF下载量:  24
  • 被引次数: 0
出版历程
  • 收稿日期:  2025-05-06
  • 修回日期:  2025-07-30
  • 网络出版日期:  2025-08-05

目录

    /

    返回文章
    返回