高级搜索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于FRIDA的多通道切换阵列DOA估计算法

陈涛 席豪林 詹磊 余玉威

陈涛, 席豪林, 詹磊, 余玉威. 基于FRIDA的多通道切换阵列DOA估计算法[J]. 电子与信息学报. doi: 10.11999/JEIT250350
引用本文: 陈涛, 席豪林, 詹磊, 余玉威. 基于FRIDA的多通道切换阵列DOA估计算法[J]. 电子与信息学报. doi: 10.11999/JEIT250350
CHEN Tao, XI Haolin, ZHAN Lei, YU Yuwei. Multi-Channel Switching Array DOA Estimation Algorithm Based on FRIDA[J]. Journal of Electronics & Information Technology. doi: 10.11999/JEIT250350
Citation: CHEN Tao, XI Haolin, ZHAN Lei, YU Yuwei. Multi-Channel Switching Array DOA Estimation Algorithm Based on FRIDA[J]. Journal of Electronics & Information Technology. doi: 10.11999/JEIT250350

基于FRIDA的多通道切换阵列DOA估计算法

doi: 10.11999/JEIT250350 cstr: 32379.14.JEIT250350
基金项目: 国家自然科学基金(62071137)
详细信息
    作者简介:

    陈涛:男,教授,博士,研究方向为宽带信号检测处理与识别、数字接收机和信号DOA估计与定位技术

    席豪林:男,硕士生,研究方向为阵列信号处理、波达方向估计

    詹磊:男,研究员博士方向为宽带信号 检测处理与识别、数字接收机和DOA估计与定位技术

    余玉威:男,讲师,研究方向为声波和电磁波模拟、反演及成像、信号处理和图像处理

    通讯作者:

    余玉威 yuyuwei@hrbeu.edu.cn

  • 中图分类号: TN911.7

Multi-Channel Switching Array DOA Estimation Algorithm Based on FRIDA

Funds: The National Natural Science Foundation of China (62071137)
  • 摘要: 针对波达方向(Direction Of Arrival, DOA)估计在实际测向系统中系统复杂度受接收通道数目影响的问题,该文提出了一种基于FRIDA(Finite Rate of Innovation Direction-of-Arrival)的多通道切换阵列DOA估计算法。该算法首先利用开关将特定子阵接收的数据传输至通道从而减少测向系统中使用的通道数目,然后通过切换不同的子阵接入通道并采样得到多个少通道接收数据协方差矩阵,利用这些协方差矩阵重构出全通道接收数据向量,以此来构建基于有限新息率(Finite Rate of Innovation, FRI)的DOA估计模型,最后通过近端梯度下降算法获得信号入射方向的估计结果。仿真实验与对实测数据的实验验证了该算法优于同等条件下的其它算法。
  • 图  1  切换阵列DOA估计系统结构示意图

    图  2  SA-FRI对多信源的DOA估计有效性验证图

    图  3  DOA估计精度随SNR变化曲线

    图  4  DOA估计精度随快拍数变化曲线

    图  5  DOA估计RMSE随SNR变化曲线

    图  6  DOA估计RMSE随快拍数变化曲线

    图  7  单信源数据接收系统

    图  8  接收信号使用的均匀线阵

    图  9  不同角度下实测数据RMSE对比

    1  基于FRIDA的多通道切换阵列DOA估计算法流程

     输入: 接收数据$ {Y_1},{Y_2}, \cdots ,{Y_Z} $。
     输出: 入射信号的DOA估计结果${\widehat \theta _k}$,$k = 1,2,\cdots,K$。
     初始化:Toeplitz算子维度参数$P$,正则化参数$\tau > 0$,参数$n \in {\mathbb{Z}_{ + + }}$,迭代停止阈值$\varepsilon \geqslant 0$,
     一类Bessel函数最大阶数参数$Q$,线性映射矩阵$G$,迭代次数$k = 0$,以及初始化向量${b^{\left( 0 \right)}} \in {\mathbb{C}^{2Q + 1}}$;
     步骤1:根据${R_{{Y_z}}} = \displaystyle\sum\nolimits_{u = 1}^u {y(u)y{{(u)}^{\rm H}}/U} $计算各接受数据协方差矩阵${R_{{Y_1}}},{R_{{Y_2}}}, \cdots ,{R_{{Y_Z}}}$;
     步骤2:根据公式(5)将计算出的$M \times M$维矩阵${R_{{Y_1}}},{R_{{Y_2}}}, \cdots ,{R_{{Y_Z}}}$转化为$L \times L$维矩阵${R_1},{R_2}, \cdots ,{R_Z}$,
     根据公式(6)(7)计算出二值选择矩阵$C$;
     步骤3:根据公式(8)将矩阵${R_1},{R_2}, \cdots ,{R_Z}$加权求和为$ R $,根据公式(9)(10)(11)计算全通道接收数据向量$r$;
     步骤4:根据公式(20)计算$ {b^{\left( {k + 1} \right)}} = pro{x_{\tau H}}\left( {{b^{\left( k \right)}} - 2\tau {G^{\rm H}}\left( {G{b^{\left( k \right)}} - r} \right)} \right) $;
     步骤5:判断$\left\| {{b^{\left( {k + 1} \right)}} - {b^{\left( k \right)}}} \right\|_2^2$与$\varepsilon $的大小关系,若$\left\| {{b^{\left( {k + 1} \right)}} - {b^{\left( k \right)}}} \right\|_2^2 \le \varepsilon $,停止迭代,进入步骤6,否则$k = k + 1$,返回步骤4;
     步骤6:对得到的${b^{\left( {k + 1} \right)}}$计算$ {T_P}\left( {{b^{(k + 1)}}} \right) $并计算其SVD分解结果$ {T_P}\left( {{b^{(k + 1)}}} \right) = {U_b}{S_b}V_b^{\rm H} $;
     步骤7:以矩阵$V$的最后一列为系数,构造多项式$ F $,并计算其零点,记为${\lambda _k}$;
     步骤8:计算信号的DOA参数$ {\theta _k} = - angle\left( {{\lambda _k}} \right) $,其中$angle\left( \cdot \right)$表示复数的幅角。
    下载: 导出CSV

    表  1  各算法计算复杂度比较

    算法复杂度
    SA-FRI$o\left( {n{T_{SA - FRI}}{{(2Q + 1 - P)}^2}P} \right)$
    MUSIC$o\left( {{L^3} + {L^2}U + {N_{grid}}{L^2}} \right)$
    ${\ell _1}$-svd$o\left( {{L^3}N_{grid}^3} \right)$
    ESPRIT$o\left( {{L^3} + {L^2}U} \right)$
    ANM$o\left( {{L^3}\log \left( {{1 \mathord{\left/ {\vphantom {1 \varepsilon }} \right. } \varepsilon }} \right)} \right)$
    CoFIT$o\left( {{T_{SBL}}\left( {{N_{grid}}{L^2} + {L^3}} \right) + {T_{iter}}{L^3}} \right)$
    下载: 导出CSV

    表  2  各算法运行时间比较

    算法SA-FRIMUSIC${\ell _1}$-svdESPRITANMCoFIT
    运行时间(秒)52.792.62140.810.13169.77179.37
    下载: 导出CSV
  • [1] 马健钧, 魏少鹏, 马晖, 等. 基于ADMM的低仰角目标二维DOA估计算法[J]. 电子与信息学报, 2022, 44(8): 2859–2866. doi: 10.11999/JEIT210582.

    MA Jianjun, WEI Shaopeng, MA Hui, et al. Two-dimensional DOA estimation for low-angle target based on ADMM[J]. Journal of Electronics & Information Technology, 2022, 44(8): 2859–2866. doi: 10.11999/JEIT210582.
    [2] WANG Zhuying, YAN Yongsheng, HE Ke, et al. Augmented matrix construction based DOA estimation of coherent underwater acoustic signals[C]. 2023 IEEE International Conference on Signal Processing, Communications and Computing, Zhengzhou, China, 2023: 1–5. doi: 10.1109/ICSPCC59353.2023.10400250.
    [3] WEN Fangqing, WANG Han, GUI Guan, et al. Polarized intelligent reflecting surface aided 2D-DOA estimation for NLoS sources[J]. IEEE Transactions on Wireless Communications, 2024, 23(7): 8085–8098. doi: 10.1109/TWC.2023.3348520.
    [4] SCHMIDT R. Multiple emitter location and signal parameter estimation[J]. IEEE Transactions on Antennas and Propagation, 1986, 34(3): 276–280. doi: 10.1109/TAP.1986.1143830.
    [5] ROY R, PAULRAJ A, and KAILATH T. ESPRIT--A subspace rotation approach to estimation of parameters of cisoids in noise[J]. IEEE Transactions on Acoustics, Speech, and Signal Processing, 1986, 34(5): 1340–1342. doi: 10.1109/TASSP.1986.1164935.
    [6] LIU Liang, LI Zhouchen, AN Jiancheng, et al. DOA estimation for switch-element arrays based on sparse representation[C]. 2024 IEEE International Conference on Acoustics, Speech and Signal Processing, Seoul, Korea, 2024: 8506–8510. doi: 10.1109/ICASSP48485.2024.10446599.
    [7] ALLMANN C, SPRINGER J, OISPUU M, et al. Experimental direction finding results using a time-multiplexed co-array approach[C]. 2023 IEEE 9th International Workshop on Computational Advances in Multi-Sensor Adaptive Processing, Herradura, Costa Rica, 2023: 336–340. doi: 10.1109/CAMSAP58249.2023.10403472.
    [8] 陈涛, 申梦雨, 史林, 等. 基于通道压缩的原子范数最小化DOA估计算法[J]. 仪器仪表学报, 2022, 43(4): 246–253. doi: 10.19650/j.cnki.cjsi.J2108691.

    CHEN Tao, SHEN Mengyu, SHI Lin, et al. A channel compression DOA estimation algorithm based on atomic norm minimization[J]. Chinese Journal of Scientific Instrument, 2022, 43(4): 246–253. doi: 10.19650/j.cnki.cjsi.J2108691.
    [9] IBRAHIM M, RAMIREDDY V, LAVRENKO A, et al. Design and analysis of compressive antenna arrays for direction of arrival estimation[J]. Signal Processing, 2017, 138: 35–47. doi: 10.1016/j.sigpro.2017.03.013.
    [10] GU Yujie, ZHANG Y D, and GOODMAN N A. Optimized compressive sensing-based direction-of-arrival estimation in massive MIMO[C]. 2017 IEEE International Conference on Acoustics, Speech and Signal Processing, New Orleans, USA, 2017: 3181–3185. doi: 10.1109/ICASSP.2017.7952743.
    [11] JING Zhehan, CAO Bingxia, MENG Xiangtian, et al. Noniterative DOA Estimation in time-modulated array under unidirectional phase center motion[J]. IEEE Antennas and Wireless Propagation Letters, 2024, 23(8): 2416–2420. doi: 10.1109/LAWP.2024.3394610.
    [12] KIM G U and KIM J P. Measurement of phase difference and direction of arrival using time-modulated array with general modulation parameters[J]. IEEE Antennas and Wireless Propagation Letters, 2023, 22(7): 1557–1561. doi: 10.1109/LAWP.2023.3251322.
    [13] NIU C, LV Tingting, LIU Yulong, et al. A DOA estimation method for coherent signals based on weighted l1-SVD[C]. 2023 IEEE 6th International Conference on Electronic Information and Communication Technology, Qingdao, China, 2023: 694–699. doi: 10.1109/ICEICT57916.2023.10245436.
    [14] CHEN Zhimin and CHEN Peng. Compressed sensing-based DOA and DOD estimation in bistatic co-prime MIMO arrays[C]. 2017 IEEE Conference on Antenna Measurements & Applications, Tsukuba, Japan, 2017: 297–300. doi: 10.1109/CAMA.2017.8273431.
    [15] 陈涛, 李敏行, 郭立民, 等. 基于原子范数最小化的极化敏感阵列DOA估计[J]. 电子学报, 2023, 51(4): 835–842. doi: 10.12263/DZXB.20220429.

    CHEN Tao, LI Minxing, GUO Limin, et al. DOA estimation of polarization sensitive array based on atomic norm minimization[J]. Acta Electronica Sinica, 2023, 51(4): 835–842. doi: 10.12263/DZXB.20220429.
    [16] 陈涛, 史林, 黄桂根, 等. 适用于任意几何结构平面阵列的无网格DOA估计算法[J]. 电子与信息学报, 2022, 44(3): 1052–1058. doi: 10.11999/JEIT210038.

    CHEN Tao, SHI Lin, HUANG Guigen, et al. Gridless DOA estimation algorithm for planar arrays with arbitrary geometry[J]. Journal of Electronics & Information Technology, 2022, 44(3): 1052–1058. doi: 10.11999/JEIT210038.
    [17] 陈涛, 赵立鹏, 史林, 等. 基于有限新息率的正交偶极子阵列信号参数估计算法[J]. 电子与信息学报, 2022, 44(7): 2469–2477. doi: 10.11999/JEIT210357.

    CHEN Tao, ZHAO Lipeng, SHI Lin, et al. Signal parameter estimation algorithm for orthogonal dipole array based on finite rate of innovation[J]. Journal of Electronics & Information Technology, 2022, 44(7): 2469–2477. doi: 10.11999/JEIT210357.
    [18] FU Ning, YUN Shuangxing, and QIAO Liyan. An efficient estimation method for the model order of FRI signal based on sub-Nyquist sampling[J]. IEEE Transactions on Instrumentation and Measurement, 2023, 72: 6505513. doi: 10.1109/TIM.2023.3320730.
    [19] PAN Hanjie, SCHEIBLER R, BEZZAM E, et al. FRIDA: FRI-based DOA estimation for arbitrary array layouts[C]. 2017 IEEE International Conference on Acoustics, Speech and Signal Processing, New Orleans, USA, 2017: 3186–3190. doi: 10.1109/ICASSP.2017.7952744.
    [20] SIMEONI M, BESSON A, HURLEY P, et al. CPGD: Cadzow plug-and-play gradient descent for generalised FRI[J]. IEEE Transactions on Signal Processing, 2021, 69: 42–57. doi: 10.1109/TSP.2020.3041089.
    [21] WEISS A J and FRIEDLANDER B. Performance analysis of diversely polarized antenna arrays[J]. IEEE Transactions on Signal Processing, 1991, 39(7): 1589–1603. doi: 10.1109/78.134397.
    [22] PARK Y, GERSTOFT P, and MECKLENBRÄUKER C F. Atom-constrained gridless DOA refinement with wirtinger gradients[J]. IEEE Open Journal of Signal Processing, 2024, 5: 1134–1146. doi: 10.1109/OJSP.2024.3496815.
  • 加载中
图(9) / 表(3)
计量
  • 文章访问数:  22
  • HTML全文浏览量:  16
  • PDF下载量:  1
  • 被引次数: 0
出版历程
  • 收稿日期:  2025-05-06
  • 修回日期:  2025-11-03
  • 录用日期:  2025-11-03
  • 网络出版日期:  2025-11-12

目录

    /

    返回文章
    返回