高级搜索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于阵列拼接的遮蔽人体目标三维成像方法

邱晨 陈家辉 邵烽智 李念 徐子涵 郭世盛 崔国龙

邱晨, 陈家辉, 邵烽智, 李念, 徐子涵, 郭世盛, 崔国龙. 基于阵列拼接的遮蔽人体目标三维成像方法[J]. 电子与信息学报. doi: 10.11999/JEIT250334
引用本文: 邱晨, 陈家辉, 邵烽智, 李念, 徐子涵, 郭世盛, 崔国龙. 基于阵列拼接的遮蔽人体目标三维成像方法[J]. 电子与信息学报. doi: 10.11999/JEIT250334
QIU Chen, CHEN Jiahui, SHAO Fengzhi, LI Nian, XU Zihan, GUO Shisheng, CUI Guolong. Three-Dimensional Imaging Method for Concealed Human Targets Based on Array Stitching[J]. Journal of Electronics & Information Technology. doi: 10.11999/JEIT250334
Citation: QIU Chen, CHEN Jiahui, SHAO Fengzhi, LI Nian, XU Zihan, GUO Shisheng, CUI Guolong. Three-Dimensional Imaging Method for Concealed Human Targets Based on Array Stitching[J]. Journal of Electronics & Information Technology. doi: 10.11999/JEIT250334

基于阵列拼接的遮蔽人体目标三维成像方法

doi: 10.11999/JEIT250334 cstr: 32379.14.JEIT250334
基金项目: 国家自然科学基金(62371110),中国博士后科学基金项目(2023M740527),博士后创新人才支持计划项目(BX20230056)
详细信息
    作者简介:

    邱晨:女,博士生,研究方向为超宽带雷达信号处理

    陈家辉:男,博士后,研究方向为研究方向为超宽带雷达信号处理、穿墙雷达成像等

    邵烽智:男,博士生,主要研究方向为毫米波雷达姿态重构

    李念:男,博士生,研究方向为穿墙雷达成像和射频无线电层析成像

    徐子涵:女,博士生,研究方向为多径雷达目标探测

    郭世盛:男,研究员,研究方向为城市环境目标探测、基于雷达的人体行为识别等

    崔国龙:男,教授,研究方向为最优化理论和算法、雷达目标检测理论、波形多样性以及城市环境目标探测等

    通讯作者:

    陈家辉 chenjiahui@uestc.edu.cn

  • 中图分类号: TN95

Three-Dimensional Imaging Method for Concealed Human Targets Based on Array Stitching

Funds: The National Natural Science Foundation of China (62371110), China Postdoctoral Science Foundation (2023M740527), Postdoctoral Innovation Talent Support Program (BX20230056)
  • 摘要: 在进行墙后人体目标三维成像时,系统需具备获取距离、方位和俯仰三维信息的能力。然而,通常采用的二维平面阵列存在通道数量多导致的校准难、成本高等问题。为此,该文提出了一种基于阵列拼接的遮蔽人体目标三维成像方法,通过单台小孔径雷达分时顺序拼接或多台独立工作的雷达同时空间拼接,实现低成本化的穿墙遮蔽人体目标三维成像。具体而言,首先通过三维加权总变分方法将各个横向阵列及纵向阵列的雷达回波数据进行初步成像;然后,将各个横向阵列获取的成像结果与纵向阵列的成像结果乘性融合,并采用Lucy-Richardson反卷积算法进一步提升成像分辨率;最后采用三维小波变换融合方法,实现各个子图像的有效融合。仿真与实测实验验证了所提方法的有效性,为墙后人体目标三维成像提供了一种新颖、低成本的解决方案。
  • 图  1  基于阵列拼接的穿墙成像示意图

    图  2  雷达图像的退化与恢复模型

    图  3  三维小波变换融合算法流程图

    图  4  阵列排布

    图  5  仿真场景

    图  6  各阵列三维总变分成像结果

    图  7  乘性融合成像结果

    图  8  乘性融合后反卷积成像结果

    图  9  所提方法成像结果

    图  10  BP算法结合像素级融合成像结果

    图  11  FISTA算法结合像素级融合成像结果

    图  12  不同信噪比下算法性能比较

    图  13  不同信噪比下各模块性能比较

    图  14  实测场景及阵列排布

    图  15  BP算法结合像素级融合站姿成像结果

    图  17  所提算法站姿成像结果

    图  18  BP算法结合像素级融合坐姿成像结果

    图  20  所提算法坐姿成像结果

    图  16  FISTA算法结合像素级融合站姿成像结果

    图  19  FISTA算法结合像素级融合坐姿成像结果

    1  三维加权总变分成像算法

     输入:采样后回波$ {{\boldsymbol{z}}^r} $,字典矩阵$ {{\boldsymbol{\varTheta }}^r} $,正则化参数$ \mu $,惩罚因子
     $ \beta $
     (1)初始化:$ {\left( {{{\boldsymbol{s}}^r}} \right)^{\left( 0 \right)}} $, $ {{\boldsymbol{O}}^{\left( 0 \right)}} $, $ {{\boldsymbol{\lambda }}^{\left( 0 \right)}} $
     (2)当不满足${\left\| {{{\left( {{{\boldsymbol{s}}^r}} \right)}^{\left( {j + 1} \right)}} - {{\left( {{{\boldsymbol{s}}^r}} \right)}^{\left( j \right)}}} \right\|_2} < \delta $或最大迭代次数时,
     执行:
     通过梯度下降法更新$ {\left( {{{\boldsymbol{s}}^r}} \right)^{\left( {j + 1} \right)}} $;
     通过式(11)更新$ {\boldsymbol{O}}_{}^{\left( {j + 1} \right)} $;
     通过式(13)更新$ {\boldsymbol{\lambda }}_{}^{\left( {k + 1} \right)} $;
     输出:重建图像${{\boldsymbol{s}}^r}$
    下载: 导出CSV

    表  1  图像指标对比

    成像方法 IE指标值
    纵向阵列1乘性融合结果 9.3126
    纵向阵列2乘性融合结果 8.9860
    纵向阵列1乘性融合后反卷积结果 7.8171
    纵向阵列2乘性融合后反卷积结果 7.2108
    BP算法结合像素级融合成像结果 9.7125
    FISTA算法结合像素级融合成像结果 9.7065
    所提算法结果 8.0711
    下载: 导出CSV

    表  2  不同姿态下图像指标对比

    姿态 IE
    BP算法结合
    像素级融合
    FISTA算法结合
    像素级融合
    所提
    方法
    站姿 9.9982 8.4990 7.0030
    坐姿 9.9947 7.8411 6.2261
    下载: 导出CSV
  • [1] NKWARI P K M, SINHA S, and FERREIRA H C. Through-the-wall radar imaging: A review[J]. IETE Technical Review, 2018, 35(6): 631–639. doi: 10.1080/02564602.2017.1364146.
    [2] YAO Yu, CHEN Jiahui, GUO Shisheng, et al. Target localization and wall parameters estimation via distributed through-wall imaging radar[J]. IEEE Transactions on Instrumentation and Measurement, 2025, 74: 6500611. doi: 10.1109/TIM.2024.3502875.
    [3] GUO Qichang, LIANG Xingdong, and LI Yanlei. A novel method for 3-D building structure determination in through-the-wall radar[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2024, 17: 7592–7607. doi: 10.1109/JSTARS.2024.3379213.
    [4] 崔国龙, 孔令讲, 杨建宇. 步进变频穿墙成像雷达中反投影算法研究[J]. 电子科技大学学报, 2008, 37(6): 864–867. doi: 10.3969/j.issn.1001-0548.2008.06.016.

    CUI Guolong, KONG Lingjiang, and YANG Jianyu. Back-projection algorithm to stepped-frequency through-the-wall radar imaging[J]. Journal of University of Electronic Science and Technology of China, 2008, 37(6): 864–867. doi: 10.3969/j.issn.1001-0548.2008.06.016.
    [5] 孔令讲, 陈国浩, 崔国龙, 等. 基于均值漂移的穿墙雷达多目标跟踪[J]. 电子科技大学学报, 2019, 48(3): 321–325. doi: 10.3969/j.issn.1001-0548.2019.03.001.

    KONG Lingjiang, CHEN Guohao, CUI Guolong, et al. Mean-shift based multiple targets tracking for TWR[J]. Journal of University of Electronic Science and Technology of China, 2019, 48(3): 321–325. doi: 10.3969/j.issn.1001-0548.2019.03.001.
    [6] ZHAO Dizhi, JIN Tian, DAI Yongpeng, et al. A three-dimensional enhanced imaging method on human body for ultra-wideband multiple-input multiple-output radar[J]. Electronics, 2018, 7(7): 101. doi: 10.3390/electronics7070101.
    [7] SONG Yongkun, JIN Tian, DAI Yongpeng, et al. Through-wall human pose reconstruction via UWB MIMO radar and 3D CNN[J]. Remote Sensing, 2021, 13(2): 241. doi: 10.3390/rs13020241.
    [8] ADIB F, HSU C Y, MAO Hongzi, et al. Capturing the human figure through a wall[J]. ACM Transactions on Graphics (TOG), 2015, 34(6): 219. doi: 10.1145/2816795.2818072.
    [9] CHEN Xi and CHEN Weidong. Double-layer fuzzy fusion for multiview through-wall radar images[J]. IEEE Geoscience and Remote Sensing Letters, 2015, 12(10): 2075–2079. doi: 10.1109/LGRS.2015.2448051.
    [10] NARAYANAN R M, GEBHARDT E T, and BRODERICK S P. Through-wall single and multiple target imaging using MIMO radar[J]. Electronics, 2017, 6(4): 70. doi: 10.3390/electronics6040070.
    [11] GUO Shisheng, CHEN Jiahui, SHI Zhenpeng, et al. Graph matching based image registration for multi-view through-the-wall imaging radar[J]. IEEE Sensors Journal, 2022, 22(2): 1486–1494. doi: 10.1109/JSEN.2021.3131326.
    [12] JIN Tian, CHEN Bo, and ZHOU Zhimin. Image-domain estimation of wall parameters for autofocusing of through-the-wall SAR imagery[J]. IEEE Transactions on Geoscience and Remote Sensing, 2013, 51(3): 1836–1843. doi: 10.1109/TGRS.2012.2206395.
    [13] JIA Yong, ZHONG Xiaoling, LIU Jiangang, et al. Single-side two-location spotlight imaging for building based on MIMO through-wall-radar[J]. Sensors, 2016, 16(9): 1441. doi: 10.3390/s16091441.
    [14] TIVIVE F H C, BOUZERDOUM A, and AMIN M G. A subspace projection approach for wall clutter mitigation in through-the-wall radar imaging[J]. IEEE Transactions on Geoscience and Remote Sensing, 2015, 53(4): 2108–2122. doi: 10.1109/TGRS.2014.2355211.
    [15] YANG Xiaopeng, ZHANG Ding, WANG Yiming, et al. Wall clutter suppression method based on amplitude coherence factor for MIMO through-the-wall radar[J]. IEEE Signal Processing Letters, 2024, 31: 2490–2494. doi: 10.1109/LSP.2024.3451314.
    [16] ZHAO Yi, YANG Xiaopeng, QU Xiaodong, et al. Clutter removal method for GPR based on low-rank and sparse decomposition with total variation regularization[J]. IEEE Geoscience and Remote Sensing Letters, 2023, 20: 3502605. doi: 10.1109/LGRS.2023.3250717.
    [17] XIAO Qingjiang, ZHAO Liaoying, CHEN Shuhan, et al. Hyperspectral anomaly detection via MERA decomposition and enhanced total variation regularization[J]. IEEE Transactions on Geoscience and Remote Sensing, 2024, 62: 5514919. doi: 10.1109/TGRS.2024.3388476.
    [18] WANG Yu, YIN Wotao, and ZENG Jinshan. Global convergence of ADMM in nonconvex nonsmooth optimization[J]. Journal of Scientific Computing, 2019, 78(1): 29–63. doi: 10.1007/s10915-018-0757-z.
    [19] HE Ang, PAN Heng, DAI Yueyue, et al. ADMM for mobile edge intelligence: A survey[J]. IEEE Communications Surveys & Tutorials. doi: 10.1109/COMST.2024.3521024. (查阅网上资料,未找到本条文献卷期页码信息,请确认并补充).
    [20] MANSOURI S A, NEMATBAKHSH E, RAMOS A, et al. A robust ADMM-enabled optimization framework for decentralized coordination of microgrids[J]. IEEE Transactions on Industrial Informatics, 2025, 21(2): 1479–1488. doi: 10.1109/TII.2024.3478274.
    [21] DING Li, CHEN Weidong, ZHANG Wenyi, et al. MIMO radar imaging with imperfect carrier synchronization: A point spread function analysis[J]. IEEE Transactions on Aerospace and Electronic Systems, 2015, 51(3): 2236–2247. doi: 10.1109/TAES.2015.140428.
    [22] HOJJATOLESLAMI S A, AVANAKI M R N, and PODOLEANU A G. Image quality improvement in optical coherence tomography using Lucy–Richardson deconvolution algorithm[J]. Applied Optics, 2013, 52(23): 5663–5670. doi: 10.1364/AO.52.005663.
    [23] BADANO A. Image quality degradation by light scattering processes in high performance display devices for medical imaging[J]. Medical Physics, 1999, 26(6): 1020. doi: 10.1118/1.598608.
    [24] WANG J and HUANG K. Medical image compression by using three-dimensional wavelet transformation[J]. IEEE Transactions on Medical Imaging, 1996, 15(4): 547–554. doi: 10.1109/42.511757.
    [25] 贺晨辉. 基于目标提取的红外与可见光图像融合算法研究[D]. 重庆: 重庆大学, 2014.

    HE Chenhui. Research on infrared and visible image fusion method based on objective extraction[D]. Chongqing: Chongqing University, 2014.
    [26] WARREN G, GIANNOPOULOS A, and GIANNAKIS I. gprMax: Open source software to simulate electromagnetic wave propagation for Ground Penetrating Radar[J]. Computer Physics Communications, 2016, 209: 163–170. doi: 10.1016/j.cpc.2016.08.020.
    [27] GUO Qiang, YANG Pengju, WU Rui, et al. Numerical modeling of GPR for underground multi-pipes detection by combining GprMax and deep learning model[J]. Progress in Electromagnetics Research M, 2024, 128: 99–128. doi: 10.2528/PIERM24062603.
    [28] BECK A and TEBOULLE M. A fast iterative shrinkage-thresholding algorithm for linear inverse problems[J]. SIAM Journal on Imaging Sciences, 2009, 2(1): 183–202. doi: 10.1137/080716542.
    [29] WEI Shunjun, ZHOU Zichen, WANG Mou, et al. 3DRIED: A high-resolution 3-D millimeter-wave radar dataset dedicated to imaging and evaluation[J]. Remote Sensing, 2021, 13(17): 3366. doi: 10.3390/rs13173366.
    [30] SONG Shaoqiu, DAI Yongpeng, SUN Shilong, et al. Efficient image reconstruction methods based on structured sparsity for short-range radar[J]. IEEE Transactions on Geoscience and Remote Sensing, 2024, 62: 5212615. doi: 10.1109/TGRS.2024.3404626.
  • 加载中
图(20) / 表(3)
计量
  • 文章访问数:  20
  • HTML全文浏览量:  9
  • PDF下载量:  0
  • 被引次数: 0
出版历程
  • 收稿日期:  2025-04-29
  • 修回日期:  2025-07-10
  • 网络出版日期:  2025-09-16

目录

    /

    返回文章
    返回