高级搜索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于增强超分辨率的异源遥感影像双路径短期密集连接度量变化检测

李希 曾怀恩 韦朋成

李希, 曾怀恩, 韦朋成. 基于增强超分辨率的异源遥感影像双路径短期密集连接度量变化检测[J]. 电子与信息学报. doi: 10.11999/JEIT250328
引用本文: 李希, 曾怀恩, 韦朋成. 基于增强超分辨率的异源遥感影像双路径短期密集连接度量变化检测[J]. 电子与信息学报. doi: 10.11999/JEIT250328
LI Xi, ZENG Huaien, WEI Pengcheng. Enhanced Super-Resolution-based Dual-Path Short-Term Dense Concatenate Metric Change Detection Network for Heterogeneous Remote Sensing Images[J]. Journal of Electronics & Information Technology. doi: 10.11999/JEIT250328
Citation: LI Xi, ZENG Huaien, WEI Pengcheng. Enhanced Super-Resolution-based Dual-Path Short-Term Dense Concatenate Metric Change Detection Network for Heterogeneous Remote Sensing Images[J]. Journal of Electronics & Information Technology. doi: 10.11999/JEIT250328

基于增强超分辨率的异源遥感影像双路径短期密集连接度量变化检测

doi: 10.11999/JEIT250328 cstr: 32379.14.JEIT250328
基金项目: 国家自然科学基金(42074005),湖北省水电工程施工与管理重点实验室(三峡大学)开放基金(2023KSD11),湖北省自然科学基金(2025ABF104)
详细信息
    作者简介:

    李希:女,讲师,研究方向为遥感影像变化检测

    曾怀恩:男,教授,研究方向为3S (GNSS, RS, GIS)技术、空天地内一体化地质灾害监测与预报

    韦朋成:男,讲师,研究方向为时空信息处理与三维重建

    通讯作者:

    曾怀恩 zenghuaien_2003@163.com

  • 中图分类号: TN911; P237

Enhanced Super-Resolution-based Dual-Path Short-Term Dense Concatenate Metric Change Detection Network for Heterogeneous Remote Sensing Images

Funds: The National Natural Science Foundation of China (42074005), Open Foundation of Hubei Key Laboratory of Construction and Management in Hydropower Engineering, China Three Gorges University (2023KSD11), Hubei Provincial Natural Science Foundation of China (2025ABF104)
  • 摘要: 光学异源高分辨率遥感影像变化检测中存在着空间分辨率差异、光谱差异以及变化类型复杂多样的问题,使得准确高效的检测异源高分辨率遥感影像中的变化更加困难。针对上述问题,该文提出一种基于增强超分辨率的异源遥感影像双路径短期密集连接度量变化检测网络(ESR-DSMNet),探讨光学异源高分辨率遥感影像高精度和高效率变化检测新路径。提出一种基于增强超分辨率的异源遥感影像质量优化网络(ESRNet),增强边缘信息和细节信息的同时,在影像级解决异源遥感影像空间分辨率差异;提出一种双路径短期密集连接度量变化检测网络(DSMNet),从特征级解决异源遥感影像的光谱差异,并实现高精度和高效率变化检测;在4组同源和异源遥感影像数据集进行对比分析表明,提出的方法领先于其他12种主流的变化检测方法,F1分别为79.69%, 71.01%, 95.87%和90.55%,所提的方法具有更高的精度和效率,泛化性能最好,在检测大面积地物和微小地物时,检测结果内部更具一致性、边缘更加精细。
  • 图  1  ESR-DSMNet网络架构

    图  2  增强超分辨率网络

    图  3  两种形式的短期密集连接模块

    图  4  两种模块架构

    图  5  13种变化检测方法在SYSU数据集和CLCD数据集的变化检测结果可视化对比

    图  6  13种变化检测方法在WXCD数据集和SACD数据集的变化检测结果可视化对比

    图  7  异源遥感影像上不同超分辨率重建方法重建影像质量对比实验示例

    图  8  SYSU数据集上DSMNet核心模块消融实验示例

    图  9  模型效率对比

    表  1  实验数据集详情

    数据集数据来源影像对数(训练/验证/测试)大小空间分辨率(m/Pixel)地区时间跨度
    SYSU航空影像12000/4000/4000256×2560.5香港2007-2014年
    CLCD高分二号影像360/120/120512×5120.5-2.0广东2017-2019年
    WXCD无人机影像
    高景一号影像
    3400/1000/1000256×2560.2
    0.5
    湖南2012-2018年
    SACD航空影像
    卫星影像
    3000/1000/1000256×2560.2
    0.6
    新西兰基督城2012-2017年
    下载: 导出CSV

    表  2  同源遥感影像上13种变化检测方法的定量结果对比(%)

    变化检测方法 SYSU CLCD
    Precision Recall F1 Precision Recall F1
    FC-Sima-diff 83.18 32.22 42.51 59.05 36.73 43.15
    FC-Sima-conc 77.97 61.85 66.37 51.15 51.62 49.34
    FC-EF 77.13 71.27 71.34 60.96 50.89 55.10
    DASNet 74.41 72.06 73.22 72.07 66.39 69.11
    IFN 71.16 77.41 72.05 38.87 58.81 44.64
    STANet/BASE 77.25 79.15 78.19 56.82 58.93 57.86
    SNUNet/32 75.49 73.15 72.61 49.36 54.76 51.19
    BIT 77.08 77.28 77.18 65.03 55.16 59.69
    ICIF-Net 80.85 73.89 77.22 80.40 46.89 59.24
    USSFC-Net 78.01 79.04 78.52 61.33 67.28 64.16
    SRCDNet 72.23 80.48 76.13 41.89 56.57 48.13
    DMNet 77.96 78.15 78.05 67.72 66.39 67.05
    DSMNet 76.66 82.98 79.69 68.27 73.98 71.01
    下载: 导出CSV

    表  3  异源遥感影像上13种变化检测方法的定量结果对比(%)

    变化检测方法 WXCD SACD
    Precision Recall F1 Precision Recall F1
    FC-Sima-diff 66.82 60.75 63.18 38.55 81.62 51.80
    FC-Sima-conc 70.82 60.78 64.56 39.49 84.87 53.37
    FC-EF 95.42 94.74 95.07 88.80 85.99 87.30
    DASNet 95.46 69.70 80.58 87.68 92.02 89.80
    IFN 82.89 85.56 83.99 82.48 80.35 80.91
    STANet/BASE 97.76 73.88 84.16 81.75 91.48 86.34
    SNUNet/32 96.64 94.21 95.39 78.75 84.23 81.22
    BIT 92.00 79.05 85.04 76.54 84.71 80.42
    ICIF-Net 96.89 92.81 94.80 89.72 90.08 89.90
    USSFC-Net 93.56 96.04 94.79 88.03 90.91 89.44
    SRCDNet 96.43 85.67 90.73 88.13 86.37 87.24
    DMNet 95.30 94.97 95.13 86.05 91.96 88.91
    DSMNet 96.67 95.08 95.87 88.56 92.63 90.55
    下载: 导出CSV

    表  4  异源遥感影像上不同超分辨率方法重建影像质量对比

    重建方法WXCD
    PSNR感知指数
    双三次插值34.747.55
    SRM33.727.62
    ESRNet34.026.30
    下载: 导出CSV

    表  5  DSMNet核心模块消融实验(%)

    模块PrecisionRecallF1
    空间细节分支注意力细化模块双分支特征融合模块
    ×76.6081.9479.18
    ×73.9480.4877.07
    ××73.7582.9278.06
    76.6682.9879.69
    下载: 导出CSV

    表  6  13种变化检测网络性能对比

    变化检测方法Params.(M)FLOPs(G)训练时间(Epoch/s) SYSUF1(%) SYSUF1(%) CLCDF1(%) WXCDF1(%) SACD
    FC-Sima-diff1.354.7326642.5143.1563.1851.80
    FC-Sima-conc1.555.3328066.3749.3464.5653.37
    FC-EF1.102.0224971.3455.1095.0787.30
    DASNet48.22100.7244573.2269.1180.5889.80
    IFN50.4482.2649972.0544.6483.9980.91
    STANet/BASE16.8912.865478.1957.8684.1686.34
    SNUNet/3212.0354.8369972.6151.1995.3981.22
    BIT3.5010.6325677.1859.6985.0480.42
    ICIF-Net23.8425.4195377.2259.2494.8089.90
    USSFC-Net1.524.8638078.5264.1690.7389.44
    SRCDNet16.9871.6827576.1348.1394.7987.24
    DMNet27.999.7214478.0567.0595.1388.91
    DSMNet13.6010.233479.6971.0195.8790.55
    下载: 导出CSV
  • [1] LIU Quanyong, PENG Jiangtao, ZHANG Genwei, et al. Deep contrastive learning network for small-sample hyperspectral image classification[J]. Journal of Remote Sensing, 2023, 3: 0025. doi: 10.34133/remotesensing.0025.
    [2] LIU Shuaijun, LIU Jia, TAN Xiaoyue, et al. A hybrid spatiotemporal fusion method for high spatial resolution imagery: Fusion of gaofen-1 and sentinel-2 over agricultural landscapes[J]. Journal of Remote Sensing, 2024, 4: 0159. doi: 10.34133/remotesensing.0159.
    [3] WANG Haoyu and LI Xiaofeng. Expanding horizons: U-net enhancements for semantic segmentation, forecasting, and super-resolution in ocean remote sensing[J]. Journal of Remote Sensing, 2024, 4: 0196. doi: 10.34133/remotesensing.0196.
    [4] MEI Shaohui, LIAN Jiawei, WANG Xiaofei, et al. A comprehensive study on the robustness of deep learning-based image classification and object detection in remote sensing: Surveying and benchmarking[J]. Journal of Remote Sensing, 2024, 4: 0219. doi: 10.34133/remotesensing.0219.
    [5] BAI Ting, WANG Le, YIN Dameng, et al. Deep learning for change detection in remote sensing: A review[J]. Geo-Spatial Information Science, 2023, 26(3): 262–288. doi: 10.1080/10095020.2022.2085633.
    [6] DAUDT R C, SAUX B L, and BOULCH A. Fully convolutional Siamese networks for change detection[C]. 2018 25th IEEE international conference on image processing (ICIP), Athens, Greece, 2018: 4063–4067. doi: 10.1109/ICIP.2018.8451652.
    [7] ZHANG Chenxiao, YUE Peng, TAPETE D, et al. A deeply supervised image fusion network for change detection in high resolution bi-temporal remote sensing images[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2020, 166: 183–200. doi: 10.1016/j.isprsjprs.2020.06.003.
    [8] FANG Sheng, LI Kaiyu, SHAO Jinyuan, et al. SNUNet-CD: A densely connected Siamese network for change detection of VHR images[J]. IEEE Geoscience and Remote Sensing Letters, 2022, 19: 8007805. doi: 10.1109/LGRS.2021.3056416.
    [9] CHEN Hao and SHI Zhenwei. A spatial-temporal attention-based method and a new dataset for remote sensing image change detection[J]. Remote Sensing, 2020, 12(10): 1662. doi: 10.3390/rs12101662.
    [10] CHEN Jie, YUAN Ziyang, PENG Jian, et al. DASNet: Dual attentive fully convolutional siamese networks for change detection in high-resolution satellite images[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2021, 14: 1194–1206. doi: 10.1109/JSTARS.2020.3037893.
    [11] LEI Tao, GENG Xinzhe, NING Hailong, et al. Ultralightweight spatial-spectral feature cooperation network for change detection in remote sensing images[J]. IEEE Transactions on Geoscience and Remote Sensing, 2023, 61: 4402114. doi: 10.1109/TGRS.2023.3261273.
    [12] CHEN Hao, QI Zipeng, and SHI Zhenwei. Remote sensing image change detection with transformers[J]. IEEE Transactions on Geoscience and Remote Sensing, 2022, 60: 5607514. doi: 10.1109/TGRS.2021.3095166.
    [13] FENG Yuchao, XU Honghui, JIANG Jiawei, et al. ICIF-Net: Intra-scale cross-interaction and inter-scale feature fusion network for bitemporal remote sensing images change detection[J]. IEEE Transactions on Geoscience and Remote Sensing, 2022, 60: 4410213. doi: 10.1109/TGRS.2022.3168331.
    [14] LIU Mengxi, SHI Qian, LIU Penghua, et al. Siamese generative adversarial network for change detection under different scales[C]. IGARSS 2020–2020 IEEE International Geoscience and Remote Sensing Symposium, Waikoloa, United States, 2020: 2543–2546. doi: 10.1109/IGARSS39084.2020.9323499.
    [15] 王超, 王帅, 陈晓, 等. 联合UNet++和多级差分模块的多源光学遥感影像对象级变化检测[J]. 测绘学报, 2023, 52(2): 283–296. doi: 10.11947/j.AGCS.2023.20220202.

    WANG Chao, WANG Shuai, CHEN Xiao, et al. Object-level change detection of multi-sensor optical remote sensing images combined with UNet++ and multi-level difference module[J]. Acta Geodaetica et Cartographica Sinica, 2023, 52(2): 283–296. doi: 10.11947/j.AGCS.2023.20220202.
    [16] LI Shaochun, WANG Yanjun, CAI Hengfan, et al. MF-SRCDNet: Multi-feature fusion super-resolution building change detection framework for multi-sensor high-resolution remote sensing imagery[J]. International Journal of Applied Earth Observation and Geoinformation, 2023, 119: 103303. doi: 10.1016/j.jag.2023.103303.
    [17] LEDIG C, THEIS L, HUSZÁR F, et al. Photo-realistic single image super-resolution using a generative adversarial network[C]. Proceedings of 2017 IEEE Conference on Computer Vision and Pattern Recognition, Honolulu, United States, 2017: 105–114. doi: 10.1109/CVPR.2017.19.
    [18] WANG Xintao, YU Ke, WU Shixiang, et al. ESRGAN: Enhanced super-resolution generative adversarial networks[C]. Proceedings of the European Conference on Computer Vision, Munich, Germany, 2019: 63–79. doi: 10.1007/978-3-030-11021-5_5.
    [19] LIU Mengxi, SHI Qian, MARINONI A, et al. Super-resolution-based change detection network with stacked attention module for images with different resolutions[J]. IEEE Transactions on Geoscience and Remote Sensing, 2022, 60: 4403718. doi: 10.1109/TGRS.2021.3091758.
    [20] LI Xi, YAN Li, ZHANG Yi, et al. ESR-DMNet: Enhanced super-resolution-based dual-path metric change detection network for remote sensing images with different resolutions[J]. IEEE Transactions on Geoscience and Remote Sensing, 2024, 62: 5402415. doi: 10.1109/TGRS.2024.3362895.
    [21] SHAO Ruizhe, DU Chun, CHEN Hao, et al. SUNet: Change detection for heterogeneous remote sensing images from satellite and UAV using a dual-channel fully convolution network[J]. Remote Sensing, 2021, 13(18): 3750. doi: 10.3390/rs13183750.
    [22] LIU Mengxi, SHI Qian, LI Jianlong, et al. Learning token-aligned representations with multimodel transformers for different-resolution change detection[J]. IEEE Transactions on Geoscience and Remote Sensing, 2022, 60: 4413013. doi: 10.1109/TGRS.2022.3200684.
    [23] XIANG Yunfan, TIAN Xiangyu, XU Yue, et al. EGMT-CD: Edge-guided multimodal transformers change detection from satellite and aerial images[J]. Remote Sensing, 2024, 16(1): 86. doi: 10.3390/rs16010086.
    [24] FAN Mingyuan, LAI Shenqi, HUANG Junshi, et al. Rethinking BiSeNet for real-time semantic segmentation[C]. Proceedings of 2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition, Nashville, USA, 2021: 9711–9720. doi: 10.1109/CVPR46437.2021.00959.
    [25] YU Changqian, WANG Jingbo, PENG Chao, et al. BiSeNet: Bilateral segmentation network for real-time semantic segmentation[C]. Proceedings of the 15th European Conference on Computer Vision, Munich, Germany, 2018: 334–349. doi: 10.1007/978-3-030-01261-8_20.
    [26] YU Changqian, GAO Changxin, WANG Jingbo, et al. BiSeNet V2: Bilateral network with guided aggregation for real-time semantic segmentation[J]. International Journal of Computer Vision, 2021, 129(11): 3051–3068. doi: 10.1007/s11263-021-01515-2.
    [27] SHI Qian, LIU Mengxi, LI Shengchen, et al. A deeply supervised attention metric-based network and an open aerial image dataset for remote sensing change detection[J]. IEEE Transactions on Geoscience and Remote Sensing, 2022, 60: 5604816. doi: 10.1109/TGRS.2021.3085870.
    [28] LIU Mengxi, CHAI Zhuoqun, DENG Haojun, et al. A CNN-transformer network with multiscale context aggregation for fine-grained cropland change detection[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2022, 15: 4297–4306. doi: 10.1109/JSTARS.2022.3177235.
    [29] KEYS R. Cubic convolution interpolation for digital image processing[J]. IEEE Transactions on Acoustics, Speech, and Signal Processing, 1981, 29(6): 1153–1160. doi: 10.1109/TASSP.1981.1163711.
    [30] ZHANG Puzhao, GONG Maoguo, SU Linzhi, et al. Change detection based on deep feature representation and mapping transformation for multi-spatial-resolution remote sensing images[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2016, 116: 24–41. doi: 10.1016/j.isprsjprs.2016.02.013.
    [31] MA Chao, YANG C Y, YANG Xiaokang, et al. Learning a no-reference quality metric for single-image super-resolution[J]. Computer Vision and Image Understanding, 2017, 158: 1–16. doi: 10.1016/j.cviu.2016.12.009.
    [32] MITTAL A, SOUNDARARAJAN R, and BOVIK A C. Making a "completely blind" image quality analyzer[J]. IEEE Signal Processing Letters, 2013, 20(3): 209–212. doi: 10.1109/LSP.2012.2227726.
  • 加载中
图(9) / 表(6)
计量
  • 文章访问数:  46
  • HTML全文浏览量:  20
  • PDF下载量:  5
  • 被引次数: 0
出版历程
  • 收稿日期:  2025-04-28
  • 修回日期:  2025-12-31
  • 录用日期:  2025-12-31
  • 网络出版日期:  2026-01-08

目录

    /

    返回文章
    返回