高级搜索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

图像增强与特征自适应联合学习的低光图像目标检测方法

乔成平 金佳堃 张俊超 朱政亮 曹祥旭

乔成平, 金佳堃, 张俊超, 朱政亮, 曹祥旭. 图像增强与特征自适应联合学习的低光图像目标检测方法[J]. 电子与信息学报. doi: 10.11999/JEIT250302
引用本文: 乔成平, 金佳堃, 张俊超, 朱政亮, 曹祥旭. 图像增强与特征自适应联合学习的低光图像目标检测方法[J]. 电子与信息学报. doi: 10.11999/JEIT250302
QIAO Chengping, JIN Jiakun, ZHANG Junchao, ZHU Zhengliang, CAO Xiangxu. Low-Light Object Detection via Joint Image Enhancement and Feature Adaptation[J]. Journal of Electronics & Information Technology. doi: 10.11999/JEIT250302
Citation: QIAO Chengping, JIN Jiakun, ZHANG Junchao, ZHU Zhengliang, CAO Xiangxu. Low-Light Object Detection via Joint Image Enhancement and Feature Adaptation[J]. Journal of Electronics & Information Technology. doi: 10.11999/JEIT250302

图像增强与特征自适应联合学习的低光图像目标检测方法

doi: 10.11999/JEIT250302 cstr: 32379.14.JEIT250302
基金项目: 国家自然科学基金(62105372),自动目标识别全国重点实验室基础研究基金(WDZC20255290209),煤炭智能开采与岩层控制全国重点实验室开放基金(SKLIS202404)
详细信息
    作者简介:

    乔成平:男,硕士生,研究方向为微光场景下目标检测

    金佳堃:男,硕士生,研究方向为基于偏振视觉的目标检测

    张俊超:男,副教授/博导,研究方向为光电信息处理、图像处理、模式识别和机器学习

    朱政亮:男,副教授,研究方向为水声信息处理、光电信息处理

    曹祥旭:男,硕士生,研究方向为医学图像处理

    通讯作者:

    张俊超 junchaozhang@csu.edu.cn

  • 中图分类号: TP391; TN247

Low-Light Object Detection via Joint Image Enhancement and Feature Adaptation

Funds: The Natural Science Foundation of China (62105372), Fundamental Research Foundation of National Key Laboratory of Automatic Target Recognition (WDZC20255290209), Open Funding of State Key Laboratory of Intelligent Coal Mining and Strata Control (SKLIS202404)
  • 摘要: 针对低光照图像目标特征弱、检测精度不足等问题,该文提出了一种基于图像增强与特征自适应联合学习的目标检测模型,该模型采用串联结构,将有监督的图像增强模块与YOLOv5目标检测模块相结合,以端到端的方式实现低光照图像目标检测。首先,利用正常光数据集生成匹配的正常光与低光图像对,实现数据集增强,并据此指导图像增强模块的学习;其次,联合图像增强损失、特征匹配损失和目标检测损失,从像素级和特征级两个层面优化目标检测结果;最后,基于真实低光照数据集进行模型参数的优化和微调。实验结果表明,该方法在仅使用真实正常光数据集训练的情况下,在LLVIP和Polar3000低光照数据集上的检测精度分别达到79.5%和85.7%,进一步在真实低光照数据集上微调后,检测精度分别提升至91.7%和92.3%,显著优于主流的低光照图像目标检测方法,并在ExDark和DarkFace的泛化实验中取得最佳检测效果。此外,该方法在提升检测精度的同时,仅带来2.5%的参数增加,具有良好的实时检测性能。
  • 图  1  网络整体结构图

    图  2  图像增强模块

    图  3  不同方法在Polar3000数据集上的A组实验测试结果。

    图  4  不同方法在LLVIP数据集上的B组的实验测试结果

    图  5  不同方法在DarkFace数据集上的B组的实验测试结果。

    表  1  Winderperson→LLVIP的对比实验结果(%)

    A组实验B组实验
    methodmAP50mAP75methodmAP50mAP75
    YOLOv555.610.2YOLOv582.137.9
    +LIME[19]59.111.8+EMNet74.631.8
    +NeRCo[22]60.512.9+NeRCo75.233.4
    +EMNet[23]62.913.5+LIME75.135.2
    MAET[16](YOLOv3)24.53.1MAET(YOLOv3)62.112.9
    FEYOLO[15](YOLOv5)64.614.1PEYOLO(YOLOv5)84.136.8
    Ours(YOLOv5)79.520.3Ours(YOLOv5)91.753.1
    Ours(YOLO11)83.524.1Ours(YOLO11)93.859.1
    下载: 导出CSV

    表  2  Polar3000的对比实验结果(%)

    A组实验B组实验
    methodmAP50mAP75methodmAP50mAP75
    YOLOv55.72.7YOLOv582.137.9
    +DeepUPE[5]10.82.8+ZeroDCE75.138.9
    +ZeroDCE[2]20.69.0+LIME77.143.8
    +LIME[19]34.921.5+DeepUPE80.546.3
    PEYOLO[8](YOLOv5)53.938.9PEYOLO(YOLOv5)75.149.3
    MAET[16](YOLOv3)58.916.1MAET(YOLOv3)85.71.0
    Ours(YOLOv5)85.772.0Ours(YOLOv5)92.376.1
    Ours(YOLO11)87.974.1Ours(YOLO11)93.777.4
    下载: 导出CSV

    表  3  Winderface→DackFace的对比实验结果(%)

    A组实验B组实验
    methodmAP50mAP75methodmAP50mAP75
    YOLOv511.50.66YOLOv540.88.33
    +DeepUPE[5]17.50.59+PairLIE42.08.30
    +PairLIE[21]21.80.92+DeepUPE42.18.28
    +EMNet[23]22.21.30+EMNet43.98.81
    PEYOLO[8](YOLOv5)10.20.68PEYOLO(YOLOv5)38.97.92
    MAET[16](YOLOv3)14.91.12MAET(YOLOv3)35.77.52
    Ours(YOLOv5)29.31.63Ours(YOLOv5)55.516.6
    下载: 导出CSV

    表  4  Exdark数据集People类别对比实验结果(%)

    方法mAP50mAP75方法mAP50mAP75
    YOLOv541.85.2MAET[16](YOLOv3)23.14.1
    +DeepUPE[5]47.56.9PEYOLO[10](YOLOv5)46.88.2
    +EMNet[23]49.87.1FEYOLO[15](YOLOv5)55.311
    +ZeroDCE[2]51.27.4Ous(YOLOv5)66.314.9
    下载: 导出CSV

    表  5  模型复杂度比较

    方法 参数量 浮点运算次数(十亿次每秒) 推理时间(每张图像)
    YOLOv5 47,025,981 115.3 14.0ms
    PEYOLO (YOLOv5) 47,117,184 137.7 49.0ms
    FEYOLO](YOLOv5) 47,165,381 202.0 26.2ms
    Ours(YOLOv5) 48,245,503 141.5 19.1ms
    下载: 导出CSV

    表  6  消融实验结果(%)

    任务 数据增强 增强损失 匹配损失 是否微调 mAP50 mAP75
    Lcfm L2 Lcf
    Winderperson
    →LLVIP
    × × × × × × 55.6 10.2
    × × × × × 71.2 19.1
    × × × × 73.1 19.7
    × × × 73.5 19.2
    × × × 75.6 19.7
    × × × 79.5 20.3
    × × × × 77.1 19.6
    × × × 89.1 52.2
    × × 91.7 53.1
    下载: 导出CSV
  • [1] WEI Chen, WANG Wenjing, YANG Wenhan, et al. Deep retinex decomposition for low-light enhancement[C]. Proceedings of British Machine Vision Conference, Newcastle, UK, 2018: 155.
    [2] GUO Chunle, LI Chongyi, GUO Jichang, et al. Zero-reference deep curve estimation for low-light image enhancement[C]. Proceedings of 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition, Seattle, USA, 2020: 1777–1786. doi: 10.1109/CVPR42600.2020.00185.
    [3] LUO Yu, CHEN Xuanrong, LING Jie, et al. Unsupervised low-light image enhancement with self-paced learning[J]. IEEE Transactions on Multimedia, 2025, 27: 1808–1820. doi: 10.1109/TMM.2024.3521752.
    [4] WANG Qiang, CUI Yuning, LI Yawen, et al. RFFNet: Towards robust and flexible fusion for low-light image denoising[C]. Proceedings of the 32nd ACM International Conference on Multimedia, Melbourne, Australia, 2024: 836–845. doi: 10.1145/3664647.3680675.
    [5] WANG Ruixing, ZHANG Qing, FU C W, et al. Underexposed photo enhancement using deep illumination estimation[C]. Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, Long Beach, USA, 2019: 6842–6850. doi: 10.1109/CVPR.2019.00701.
    [6] JOCHER G, STOKEN A, BOROVEC J, et al. ultralytics/yolov5: v5.0-YOLOv5-P6 1280 models, AWS, supervise. ly and YouTube integrations[EB/OL]. https://zenodo.org/records/4679653, 2021.
    [7] QIN Qingpao, CHANG Kan, HUANG Mengyuan, et al. DENet: Detection-driven enhancement network for object detection under adverse weather conditions[C]. Proceedings of the 16th Asian Conference on Computer Vision, Macao, China, 2022: 491–507. doi: 10.1007/978-3-031-26313-2_30.
    [8] YIN Xiangchen, YU Zhenda, FEI Zetao, et al. PE-YOLO: Pyramid enhancement network for dark object detection[C]. Proceedings of the 32nd International Conference on Artificial Neural Networks on Artificial Neural Networks and Machine Learning, Heraklion, Crete, Greece, 2023: 163–174. doi: 10.1007/978-3-031-44195-0_14.
    [9] REDMON J and FARHADI A. YOLOv3: An incremental improvement[J]. arXiv preprint arXiv: 1804.02767, 2018. doi: 10.48550/arXiv.1804.02767 (查阅网上资料,不确定文献类型及格式是否正确,请确认).
    [10] LIU Wenyu, REN Gaofeng, YU Runsheng, et al. Image-adaptive YOLO for object detection in adverse weather conditions[C]. Proceedings of the 36th AAAI Conference on Artificial Intelligence, 2022: 1792–1800. doi: 10.1609/aaai.v36i2.20072.(查阅网上资料,未找到本条文献出版地信息,请确认).
    [11] JIA Xinyu, ZHU Chuang, LI Minzhen, et al. LLVIP: A visible-infrared paired dataset for low-light vision[C]. Proceedings of the IEEE/CVF International Conference on Computer Vision Workshops, Montreal, Canada, 2021: 3489–3497. doi: 10.1109/ICCVW54120.2021.00389.
    [12] FENG Bin, XIAO Jinpei, ZHANG Junchao, et al. Color-polarization synergistic target detection method considering shadow interference[J]. Defence Technology, 2024, 37: 50–61. doi: 10.1016/j.dt.2024.01.007.
    [13] WANG Shuhang and LUO Gang. Naturalness preserved image enhancement using a priori multi-layer lightness statistics[J]. IEEE Transactions on Image Processing, 2018, 27(2): 938–948. doi: 10.1109/TIP.2017.2771449.
    [14] LOH Y P and CHAN C S. Getting to know low-light images with the exclusively dark dataset[J]. Computer Vision and Image Understanding, 2019, 178: 30–42. doi: 10.1016/j.cviu.2018.10.010.
    [15] HASHMI K A, KALLEMPUDI G, STRICKER D, et al. FeatEnHancer: Enhancing hierarchical features for object detection and beyond under low-light vision[C]. Proceedings of the IEEE/CVF International Conference on Computer Vision, Paris, France, 2023: 6702–6712. doi: 10.1109/ICCV51070.2023.00619.
    [16] CUI Ziteng, QI Guojun, GU Lin, et al. Multitask AET with orthogonal tangent regularity for dark object detection[C]. Proceedings of the IEEE/CVF International Conference on Computer Vision, Montreal, Canada, 2021: 2533–2542. doi: 10.1109/ICCV48922.2021.00255.
    [17] DU Zhipeng, SHI Miaojing, and DENG Jiankang. Boosting object detection with zero-shot day-night domain adaptation[C]. Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, Seattle, USA, 2024: 12666–12676. doi: 10.1109/CVPR52733.2024.01204.
    [18] ZHANG Qing, NIE Yongwei, and ZHENG Weishi. Dual illumination estimation for robust exposure correction[J]. Computer Graphics Forum, 2019, 38(7): 243–252. doi: 10.1111/cgf.13833.
    [19] GUO Xiaojie, LI Yu, and LING Haibin. LIME: Low-light image enhancement via illumination map estimation[J]. IEEE Transactions on Image Processing, 2017, 26(2): 982–993. doi: 10.1109/TIP.2016.2639450.
    [20] XU Xiaogang, WANG Ruixing, FU C W, et al. SNR-aware low-light image enhancement[C]. Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, New Orleans, USA, 2022: 17693–17703. doi: 10.1109/CVPR52688.2022.01719.
    [21] FU Zhenqi, YANG Yan, TU Xiaotong, et al. Learning a simple low-light image enhancer from paired low-light instances[C]. Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, Vancouver, Canada, 2023: 22252–22261. doi: 10.1109/CVPR52729.2023.02131.
    [22] YANG Shuzhou, DING Moxuan, WU Yanmin, et al. Implicit neural representation for cooperative low-light image enhancement[C]. Proceedings of the IEEE/CVF International Conference on Computer Vision, Paris, France, 2023: 12872–12881. doi: 10.1109/ICCV51070.2023.01187.
    [23] YE Dongjie, NI Zhangkai, YANG Wenhan, et al. Glow in the dark: Low-light image enhancement with external memory[J]. IEEE Transactions on Multimedia, 2024, 26: 2148–2163. doi: 10.1109/TMM.2023.3293736.
    [24] GHARBI M, CHEN Jiawen, BARRON J T, et al. Deep bilateral learning for real-time image enhancement[J]. ACM Transactions on Graphics (TOG), 2017, 36(4): 118.
  • 加载中
图(5) / 表(6)
计量
  • 文章访问数:  61
  • HTML全文浏览量:  55
  • PDF下载量:  12
  • 被引次数: 0
出版历程
  • 收稿日期:  2025-04-25
  • 修回日期:  2025-08-20
  • 网络出版日期:  2025-08-28

目录

    /

    返回文章
    返回