高级搜索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

可重构铁电数据选择器设计及在映射中的应用

吴乾火 王伦耀 查晓婧 储著飞 夏银水

吴乾火, 王伦耀, 查晓婧, 储著飞, 夏银水. 可重构铁电数据选择器设计及在映射中的应用[J]. 电子与信息学报. doi: 10.11999/JEIT250263
引用本文: 吴乾火, 王伦耀, 查晓婧, 储著飞, 夏银水. 可重构铁电数据选择器设计及在映射中的应用[J]. 电子与信息学报. doi: 10.11999/JEIT250263
WU Qianhuo, WANG Lunyao, ZHA Xiaojing, CHU Zhufei, XIA Yinshui. Design of Reconfigurable FeFET-MUX and Its Application in Mapping[J]. Journal of Electronics & Information Technology. doi: 10.11999/JEIT250263
Citation: WU Qianhuo, WANG Lunyao, ZHA Xiaojing, CHU Zhufei, XIA Yinshui. Design of Reconfigurable FeFET-MUX and Its Application in Mapping[J]. Journal of Electronics & Information Technology. doi: 10.11999/JEIT250263

可重构铁电数据选择器设计及在映射中的应用

doi: 10.11999/JEIT250263 cstr: 32379.14.JEIT250263
基金项目: 国家自然科学基金(U23A20351, 62304115),浙江省自然科学基金创新群体项目(LDT23F04021F04),宁波市重点研发计划(2023Z233, 2023Z071),浙江省教育厅一般项目(Y202248965)
详细信息
    作者简介:

    吴乾火:男,硕士生,研究方向为铁电存算一体电路设计和逻辑综合

    王伦耀:男,教授,研究方向为存算一体逻辑电路设计与综合

    查晓婧:女,讲师,研究方向为存算一体逻辑综合

    储著飞:男,教授,研究方向为集成电路设计自动化

    夏银水:男,教授,研究方向为低功耗集成电路设计

    通讯作者:

    王伦耀 wanglunyao@nbu.edu.cn

  • 中图分类号: TP331.1

Design of Reconfigurable FeFET-MUX and Its Application in Mapping

Funds: The National Natural Science Foundation of China (U23A20351, 62304115), The Natural Science Foundation of Zhejiang Province (LDT23F04021F04), Ningbo Key Research and Development Program (2023Z233, 2023Z071), General Project of Zhejiang Provincial Education Department (Y202248965)
  • 摘要: 目前以铁电晶体管(FeFET)为基础的存算一体逻辑电路的映射以阵列为主,该文提出一种以铁电晶体管-数据选择器(FeFET-MUX)为基本电路单元存算一体逻辑电路的实现方法。该方法主要包含两方面内容:(1) 提出一种可重构的FeFET-MUX电路,该电路具有结构共享、数据输入端可扩展的特点。(2) 提出适合该FeFET-MUX映射的逻辑函数分割方法,通过将待实现的逻辑函数表示成二元决策图(BDD),然后将BDD分割成适合FeFET-MUX映射的子BDD集合,最后完成逻辑函数用FeFET-MUX的映射。该文所提FeFET-MUX电路的逻辑功能用已有的FeFET模型进行仿真验证,用于映射的BDD分割算法用C++实现。实验结果表明,相比于传统的非结构共享二选一FeFET-MUX电路的映射结果,采用所提结构共享FeFET-MUX电路结合BDD分割算法,FeFET的使用数量平均可以减少79.9%。
  • 图  1  n型FeFET

    图  2  本文提出的FeFET-MUX电路

    图  3  对图2(b)所示电路的逻辑功能仿真的结果

    图  4  逻辑函数的BDD表示形式以及BDD的分割

    图  5  与图4(b)分割对应的用FeFET-MUX实现的电路图

    图  6  对图5电路的逻辑功能仿真的结果

    图  7  一个BDD的分割

    图  8  多输出BDD的分割示例

    表  1  单个二选一FeFET-MUX的功耗和延迟

    SDaDb平均功耗(nW)延迟(ns)
    00029.41.1
    00176.01.2
    01029.61.1
    01176.51.3
    10029.41.1
    10129.61.1
    11076.01.3
    11176.51.3
    avg52.91.2
    下载: 导出CSV

    1  BDD_Partitioning

     输入:ROBDD ${\mathcal{B}} $
     输出:${\mathcal{B}} $ with sub_bdds marks
     1. i=0;
     2. Nst=find_start_node(${\mathcal{B}} $);
     3. WHILE(Nst!=Null_node) {
     4.  Extend_node(${\mathcal{B}} $, Nst, i);
     5.  i++;
     6.  Nst=find_start_node(${\mathcal{B}} $); }
     7. Out_node_check(${\mathcal{B}} $, sub_bdds);
    下载: 导出CSV

    2  Extend_node(${\mathcal{B}} $, Nst, i)

     输入:ROBDD bdd ${\mathcal{B}} $, Nst, i
     输出:${\mathcal{B}} $ with sub_bdds marks
     1. WHILE(Nst!=const_node) {
     2.  IF Select(Nst.T) && Select(Nst.E) THEN
     3.   Nst=Add_nLv_node(${\mathcal{B}} $, L(Nst), i);
     4.  ELSE {
     5.   selT=0; selE=0;
     6.   ΔL1=L(Nst)–L(Nst.T);
     7.   selT=Mul_sel(${\mathcal{B}} $, Nst.T, ΔL1);
     8.   ΔL2=L(Nst)-L(Nst.E);
     9.   selE=Mul_sel(${\mathcal{B}} $, Nst.E, ΔL2);
     10.   IF(selT || selE) THEN
     11.   Nst =Node_sel(${\mathcal{B}} $, Nst, ΔL1, ΔL2, selT, selE, i);
     12. ELSE Nst=Add_other_node(${\mathcal{B}} $, L(Nst), i); } }
    下载: 导出CSV

    表  2  基准电路的算法测试结果

    电路I/OROBDD
    节点数(Nbdd)
    ROBDD
    单层最大节点数
    子BDD数
    (Nsub_bdd)
    子BDD
    最大节点数
    FeTRd(%)时间(s)
    5xp17/10551118667.21.010E-4
    alu414/87331231321382.02.701E-3
    apex145/4514232472572181.91.100E-2
    apex49/19903348358760.48.434E-3
    b941/2112619361371.43.820E-4
    clip9/51464147867.83.440E-4
    cm163a16/53378975.81.160E-4
    cordic23/295682091.61.360E-4
    dalu75/168031421422482.35.169E-3
    e6465/6536830656082.39.750E-4
    ex4p12828710341152783.84.199E-3
    frg2143/1391274742173683.01.100E-2
    misex314/147821411681278.54.326E-3
    parity16/117111694.16.100E-5
    pair173/17338721705805285.08.200E-2
    seq41/3520252764051980.02.700E-2
    squar55/8391215461.51.050E-4
    table517/156931051201582.72.758E-3
    too_large38/377773902388.42.726E-3
    vda17/395061241271174.92.074E-3
    x3135/99697791484078.86.481E-3
    x494/71544551242177.22.753E-3
    i2201/1584243611693.82.028E-3
    i3132/61331103792.52.250E-4
    i988/63925322641971.51.400E-2
    i10257/22433995183134556889.85.402
    avg79.9
    下载: 导出CSV
  • [1] LI Yueting, BAI Tianshuo, XU Xinyi, et al. A survey of MRAM-centric computing: From near memory to in memory[J]. IEEE Transactions on Emerging Topics in Computing, 2023, 11(2): 318–330. doi: 10.1109/TETC.2022.3214833.
    [2] ANTOLINI A, LICO A, SCARSELLI E F, et al. An embedded PCM peripheral unit adding analog MAC in-memory computing feature addressing non-linearity and time drift compensation[C]. ESSCIRC 2022-IEEE 48th European Solid State Circuits Conference (ESSCIRC), Milan, Italy, 2022: 109–112. doi: 10.1109/ESSCIRC55480.2022.9911447.
    [3] DING Zhetao, LI Xueyang, JIN Chengji, et al. Experimental demonstration of non-volatile Boolean logic with field configurable 1FeFET-1RRAM technology[J]. IEEE Electron Device Letters, 2024, 45(6): 1084–1087. doi: 10.1109/LED.2024.3390403.
    [4] BEYER S, DÜNKEL S, TRENTZSCH M, et al. FeFET: A versatile CMOS compatible device with game-changing potential[C]. 2020 IEEE International Memory Workshop (IMW), Dresden, Germany, 2020: 1–4. doi: 10.1109/IMW48823.2020.9108150.
    [5] MARCHAND C, NICOLAS A, MATRANGOLO P A, et al. FeFET based Logic-in-Memory design methodologies, tools and open challenges[C]. 2023 IFIP/IEEE 31st International Conference on Very Large Scale Integration (VLSI-SoC), Dubai, United Arab Emirates, 2023: 1–6. doi: 10.1109/VLSI-SoC57769.2023.10321901.
    [6] JIANG Yuxiao, NI Kai, KÄMPFE T, et al. CSA-CiM: Enhancing multifunctional computing-in-memory with configurable sense amplifiers[J]. IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems, 2025, 44(5): 1869–1873. doi: 10.1109/TCAD.2024.3506864.
    [7] LIU Rui, ZHANG Xiaoyu, XIE Zhiwen, et al. FeCrypto: Instruction set architecture for cryptographic algorithms based on FeFET-based in-memory computing[J]. IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems, 2023, 42(9): 2889–2902. doi: 10.1109/TCAD.2022.3233736.
    [8] YAN Aibin, CHEN Yu, GAO Zhongyu, et al. FeMPIM: A FeFET-based multifunctional processing-in-memory cell[J]. IEEE Transactions on Circuits and Systems II: Express Briefs, 2024, 71(4): 2299–2303. doi: 10.1109/TCSII.2023.3331267.
    [9] LALENI N, MÜLLER F, CUÑARRO G, et al. A high-efficiency charge-domain compute-in-memory 1F1C macro using 2-bit FeFET cells for DNN processing[J]. IEEE Journal on Exploratory Solid-State Computational Devices and Circuits, 2024, 10: 153–160. doi: 10.1109/JXCDC.2024.3495612.
    [10] HUANG Yuanyu, HUANG P T, LEE P Y, et al. A new approach for reconfigurable multifunction logic-in-memory using complementary ferroelectric-FET (CFeFET)[J]. IEEE Transactions on Electron Devices, 2023, 70(8): 4497–4500. doi: 10.1109/TED.2023.3287941.
    [11] BREYER E T, MULAOSMANOVIC H, TROMMER J, et al. Compact FeFET circuit building blocks for fast and efficient nonvolatile logic-in-memory[J]. IEEE Journal of the Electron Devices Society, 2020, 8: 748–756. doi: 10.1109/JEDS.2020.2987084.
    [12] RAMANUJAM S and BURLESON W. Reconfiguring the mux-based arbiter PUF using FeFETs[C]. 2021 22nd International Symposium on Quality Electronic Design (ISQED), Santa Clara, USA, 2021: 257–262. doi: 10.1109/ISQED51717.2021.9424328.
    [13] DÜNKEL S, TRENTZSCH M, RICHTER R, et al. A FeFET based super-low-power ultra-fast embedded NVM technology for 22nm FDSOI and beyond[C]. 2017 IEEE International Electron Devices Meeting (IEDM), San Francisco, USA, 2017: 19.7. 1–19.7. 4. doi: 10.1109/IEDM.2017.8268425.
    [14] AZIZ A, GHOSH S, DATTA S, et al. Physics-based circuit-compatible SPICE model for ferroelectric transistors[J]. IEEE Electron Device Letters, 2016, 37(6): 805–808. doi: 10.1109/LED.2016.2558149.
    [15] NI Kai, JERRY M, SMITH J A, et al. A circuit compatible accurate compact model for ferroelectric-FETs[C]. 2018 IEEE Symposium on VLSI Technology, Honolulu, USA, 2018: 131–132. doi: 10.1109/VLSIT.2018.8510622.
    [16] DENG Shan, YIN Guodong, CHAKRABORTY W, et al. A comprehensive model for ferroelectric FET capturing the key behaviors: Scalability, variation, stochasticity, and accumulation[C]. 2020 IEEE Symposium on VLSI Technology, Honolulu, USA, 2020: 1–2. doi: 10.1109/VLSITechnology18217.2020.9265014.
    [17] YIN Xunzhao, CHEN Xiaoming, NIEMIER M, et al. Ferroelectric FETs-based nonvolatile logic-in-memory circuits[J]. IEEE Transactions on Very Large Scale Integration (VLSI) Systems, 2019, 27(1): 159–172. doi: 10.1109/TVLSI.2018.2871119.
    [18] CHAKRABORTI S, CHOWDHARY P V, DATTA K, et al. BDD based synthesis of Boolean functions using memristors[C]. 2014 9th International Design and Test Symposium (IDT), Algeries, Algeria, 2014: 136–141. doi: 10.1109/IDT.2014.7038601.
    [19] CHAKRABORTY A, GUPTA P S, SINGH R, et al. BDD-based synthesis approach for in-memory logic realization utilizing Memristor Aided loGIC (MAGIC)[J]. Integration, 2021, 81: 254–267. doi: 10.1016/j.vlsi.2021.08.002.
  • 加载中
图(8) / 表(4)
计量
  • 文章访问数:  154
  • HTML全文浏览量:  55
  • PDF下载量:  34
  • 被引次数: 0
出版历程
  • 收稿日期:  2025-04-14
  • 修回日期:  2025-07-21
  • 网络出版日期:  2025-08-07

目录

    /

    返回文章
    返回