Constructing Two Classes of Maximum Distance Separable Entanglement-Assisted Quantum Error-Correcting Codes by Using Twisted Generalized Reed-Solomon Codes
-
摘要: 随着量子通信和量子计算技术的飞速发展,高效量子纠错编码技术已成为保障量子系统可靠性的核心需求。传统量子纠错码在参数灵活性和最小距离约束方面存在显著局限性,难以适应复杂量子通信场景中的动态需求。该文基于扭曲的Reed-Solomon(TGRS)码,根据码长中$ i $的奇偶性的不同具体讨论矩阵$ \boldsymbol{G}{\boldsymbol{G}}^{\mathrm{H}} $的秩,进一步通过分析该矩阵的秩确定厄米特正交包的维数,从而得到两类极大距离可分纠缠辅助量子纠错码(MDS EAQECCs)。研究发现,通过特定的扭曲操作,所构造的两类MDS EAQECCs不仅能够灵活调整码长,还能显著提升最小距离,突破了传统理论界限。此外,该文利用扭曲操作将两类MDS EAQECCs提升为最大纠缠态极大距离可分纠缠辅助量子纠错码 (ME-MDS EAQECCs)。该文研究成果不仅为量子纠错码设计提供了更广泛的参数选择,还为动态量子通信场景中的高效纠错提供了理论支撑。
-
关键词:
- 纠缠辅助量子码 /
- 扭曲的Reed-Solomon码 /
- 厄米特正交包
Abstract:Objective With the rapid development of quantum communication and computation, efficient error-correction technologies are critical for ensuring the reliability of quantum systems. Maximal Distance Separable (MDS) Entanglement-Assisted Quantum Error-Correcting Codes (EAQECCs) with flexible code lengths and larger minimum distances offer significant advantages in enhancing quantum system robustness. However, classical quantum codes face limitations in parameter flexibility and minimum distance constraints. This study addresses these challenges by leveraging Twisted Generalized Reed-Solomon (TGRS) codes to construct novel MDS EAQECCs, aiming to improve performance in complex quantum communication scenarios. In this paper, TGRS codes are innovatively applied to construct MDS EAQECCs. Different from polynomial construction methods, we determine the dimension of the Hermitian Hull through special matrix rank analysis, and successfully construct $ q $-ary MDS EAQECCs with a minimum distance exceeding$ q+1 $. Two construction schemes with flexible code lengths are proposed. Notably, the minimum distances of the constructed $ q $-ary codes all exceed $ q+1 $. Table 2 systematically summarizes the known MDS EAQECCs with a length less than $ {q}^{2} $ and a minimum distance exceeding $ q+1 $. The novelty of the construction schemes in this paper is highlighted through parameter comparison. Reasoning shows that our schemes achieve flexible adjustment of the code length while maintaining the advantage of the minimum distance.Methods The proposed approach integrates TGRS codes with algebraic techniques to design MDS EAQECCs. Two families of MDS EAQECCs are constructed by using TGRS codes over finite fields. The key steps are as follows: (1) TGRS Code Construction: Utilizing twisted polynomials and hook parameters to generate TGRS codes with adjustable dimensions and minimum distances. (2) Hermitian Hull Analysis: Applying matrix rank analysis to determine the dimensions of the Hermitian Hull of the constructed codes, which is crucial for satisfying the Singleton bound in quantum codes. (3) Twisted Operation Optimization: Employing twisted operations to transform the constructed MDS EAQECCs into ME-MDS EAQECCs. Results and Discussions This paper constructs two families of MDS EAQECCs using TGRS codes and gives certain twisted conditions under which the codes are ME-MDS EAQECCs. Compared with other known codes, these new codes have more flexible parameters and significant advantages in terms of code length, minimum distance, and maximum entanglement state. This paper constructs $ q $-ary EAQECCs with $ [[i(q-1), $$ i(q-1)-2j-q-t+2v+2,q+j+1;q-t+2v+2]{]}_{q} $ when $ i $ is odd and $ [[i(q-1),i(q-1)- 2j-q-t+ $$ 2v+3,q+j+1;q-t+2v+3]{]}_{q} $ when $ i $ is even. Based on Theorem 1 and Theorem 2, several types of MDS EAQECCs are obtained, and their parameters are listed in Table 1 .Theorems 3-6 give the existence conditions of specific $ q $-ary EAQECCs under different parameter settings. Furthermore, this paper upgrades the MDS EAQECCs to ME-MDS EAQECCs with $ \left[\right[i(q-1),i(q-1)-q-j,q+j+1;q+j]{]}_{q} $ by a twisted operation. Meanwhile, this paper constructs $ q $-ary EAQECCs with $ \left[\right[i(q+1),(i-1)(q+1)-s,q+2;q-s+1]{]}_{q} $. Moreover, this paper upgrades the MDS EAQECCs to ME-MDS EAQECCs with $ [[i(q+1),(i-1) $$ (q+1),q+2;q+1]{]}_{q} $ by a twisted operation. Theorem 7 gives the dimension of the Hermitian Hull of this RS code after the twisted operation on its generating matrix. Similar to the first construction, a new twisted operation is applied, which upgrades the MDS EAQECCs to ME-MDS EAQECCs with specific parameters. Theorems 8, 9 give the existence conditions of specific $ q $-ary EAQECCs under different parameter settings based on this construction method.Conclusions Two families of MDS EAQECCs are constructed using TGRS codes, and the parameters of known MDS EAQECCs are systematically summarized. Comparative analysis reveals that the EAQECCs proposed in this paper offer the following advantages: Compared with the known $ q $-ary MDS EAQECCs ( Table 2 ), the parameters of the MDS EAQECCs constructed here are new and have not been covered by previous studies; The codes not only enable flexible code-length adjustments but also achieve a minimum distance that significantly exceeds traditional theoretical bounds; Under specific twisted conditions, the constructed MDS EAQECCs are upgraded to ME-MDS EAQECCs. By introducing the twisted operation on RS codes, more flexible parameter combinations are obtained. This provides greater flexibility in the design of quantum error-correcting codes, enabling better adaptation to different quantum communication requirements. This improvement further optimizes the performance of quantum error-correcting codes, enhancing the entanglement-assisted error-correcting ability and improving the overall efficiency of quantum systems. These research results indicate that TGRS codes are important theoretical tools for constructing high-performance EAQECCs with excellent parameters. They play a pivotal part in advancing the development of quantum communication technology. Moreover, they offer a firm theoretical underpinning for the practical implementation of quantum error-correcting codes. Future research can focus on further exploring the potential of TGRS codes in constructing more advanced quantum error-correcting codes and expanding their applications in different quantum communication scenarios. -
表 1 本文构造的MDS EAQECCs
构造类 构造参数 参数来源 1 $ \left[\right[120, 58, 37; 10]{]}_{25} $ 定理3 $ \left[\right[156, 106, 40; 28]{]}_{27} $ 定理3 $ \left[\right[288, 194, 73; 50]{]}_{49} $ 定理3 $ \left[\right[160, 2, 121; 82]{]}_{81} $ 定理4 $ \left[\right[78, 11, 40; 11]{]}_{27} $ 定理5 $ \left[\right[72, 22, 40; 28]{]}_{25} $ 定理5 $ \left[\right[496, 250, 187; 126]{]}_{125} $ 定理6 $ \left[\right[32, 18, 13; 10]{]}_{9} $ 定理6 $ \left[\right[32, 20, 13; 12]{]}_{9} $ 定理3的ME提升 $ \left[\right[78, 39, 40; 39]{]}_{25} $ 定理3的ME提升 2 $ \left[\right[130, 103, 27; 25]{]}_{25} $ 定理8 $ \left[\right[30, 23, 7; 5]{]}_{5} $ 定理8 $ \left[\right[630, 503, 127; 125]{]}_{125} $ 定理8 $ \left[\right[84, 55, 29; 27]{]}_{27} $ 定理9 $ \left[\right[12, 7, 5; 3]{]}_{3} $ 定理9 $ \left[\right[30, 19, 11; 9]{]}_{9} $ 定理9 $ \left[\right[12, 8, 5; 4]{]}_{3} $ 定理8的ME提升 $ \left[\right[30, 24, 7; 6]{]}_{5} $ 定理8的ME提升 表 2 与已知$ q $-元MDS EAQECCs的参数对比
构造类 $ n $ $ d $ $ c $ 限制条件 文献 1 $ 2\mathrm{\lambda }\left(q-1\right) $ $ d $ $ 2i $ $ i\in \left\{\mathrm{1,2}\right\} $, $ \mathrm{\lambda } $为奇数, $ \mathrm{\lambda }|\left(q-1\right) $, $ 8|\left(q+1\right) $ $ \dfrac{q-1}{2}\left(i-1\right)+4\mathrm{\lambda }+1\le d\le \dfrac{q-1}{2}+2\left(i+1\right)\mathrm{\lambda } $ [30] 2 $ \dfrac{{q}^{2}-1}{\mathrm{\lambda }} $ $ y+1 $ $ y $ $ 1\le y\le \left\lfloor\dfrac{{q}^{2}-1}{2\mathrm{\lambda }}\right\rfloor $ [31] 3 $ {q}^{2}+i $ $ d $ 1 $ 2\le d\le 2q+i-1),i\in \{-\mathrm{1,1}\} $, [32] $ \dfrac{{q}^{2}-1}{i} $ $ d $ 2 $ \dfrac{q+1}{2}+2\le d\le \dfrac{3}{2}q-\dfrac{1}{2} $ 4 $ {q}^{2}+1 $ $ 2q+2 $ 5 $ q\equiv 3\left(\mathrm{m}\mathrm{o}\mathrm{d}4\right) $ [33] $ {q}^{2}+1 $ $ 2\mathrm{\lambda }+2 $ 9 $ q\equiv 3\left(\mathrm{m}\mathrm{o}\mathrm{d}4\right) $, $ q+1\le \mathrm{\lambda }\le 2q-2 $ $ \dfrac{{q}^{2}-1}{4} $ $ d $ 4 $ q\equiv 3\left(\mathrm{m}\mathrm{o}\mathrm{d}4\right) $, $ \dfrac{3q+7}{4}\le d\le \dfrac{5q+1}{4} $ 5 $ \dfrac{\left(q-1\right)\left(q+1\right)}{8} $ $ d $ 8 $ q+1\le d\le \dfrac{9q-1}{8} $ [34] 6 $ \dfrac{{q}^{2}-1}{i} $ $ d $ $ i $ $ i\in \{\mathrm{3,5},7\},q+1\le d\le \dfrac{\left(i+1\right)\left(q+1\right)}{j}-1 $ [35] $ \dfrac{{q}^{2}-1}{j} $ $ d $ 7 $ d=\dfrac{8\left(q+1\right)}{j}-1 $ 7 $ \dfrac{{q}^{2}+1}{2} $ $ 3q-1 $ 13 $ q\ge 5 $ [36] $ 4q- 2 $ 25 $ q\ge 7 $ $ 6q- 4 $ 61 $ q\ge 11 $ 8 $ i\left(q-1\right) $ $ q+j+1 $ $ q-t+2v+2 $ $ {i}^{2}\equiv 1 \left(\text{mod} p\right) $或$ i\equiv 0 \left(\text{mod} p\right) $, $ i $为奇数,
$ j=\dfrac{q-3}{2} $, $ v=\left\lfloor\dfrac{\left(j+1\right)t}{q+1}\right\rfloor $, $ t=\mathrm{gcd}\left(i,q+1\right) $定理3 $ i\left(q-1\right) $ $ q+j+1 $ $ q-t+2v+3 $ $ {i}^{2}\equiv 1 \left(\text{mod} p\right) $或$ i\equiv 0 \left(\text{mod} p\right) $, $ i $为偶数,
$ j=\dfrac{q-3}{2} $, $ v=\left\lfloor\dfrac{\left(j+1\right)t}{q+1}\right\rfloor $, $ t=\mathrm{gcd}\left(i,q+1\right) $$ i\left(q-1\right) $ $ q+j+1 $ $ q+j $ $ c=d-1 $ ME提升 $ 2\left(q-1\right) $ $ q+j+1 $ $ q-t+2v+3 $ $ c=d-1 $,$ i=2 $ $ 3\left(q-1\right) $ $ q+j+1 $ $ q-t+2v+2 $ $ c=d-1 $,$ i=3 $ 9 $ i\left(q+1\right) $ $ q+2 $ $ q-s+1 $ $ i $为奇数, $ {i}^{2}\equiv 1 \left(\text{mod} p\right) $或$ i\equiv 0 \left(\text{mod} p\right) $,$ 2\le i\le q-2 $, $ s=\mathrm{gcd}\left(i,q-1\right) $ 定理8 $ i\left(q+1\right) $ $ q+2 $ $ c=d-1 $ ME提升 $ 3\left(q+1\right) $ $ q+2 $ $ q $ $ c=d-1 $,$ i=3 $ -
[1] GISIN N, RIBORDY G, TITTEL W, et al. Quantum cryptography[J]. Reviews of Modern Physics, 2002, 74(1): 145–195. doi: 10.1103/RevModPhys.74.145. [2] NI Zhongchu, LI Sai, DENG Xiaowei, et al. Beating the break-even point with a discrete-variable-encoded logical qubit[J]. Nature, 2023, 616(7955): 56–60. doi: 10.1038/s41586-023-05784-4. [3] 吕欣, 马智, 冯登国. 基于量子Calderbank-Shor-Steane纠错码的量子安全直接通信[J]. 软件学报, 2006, 17(3): 509–515. doi: 10.1360/jos170509.LÜ Xin, MA Zhi, and FENG Dengguo. Quantum secure direct communication using quantum Calderbank-Shor-Steane error correcting codes[J]. Journal of Software, 2006, 17(3): 509–515. doi: 10.1360/jos170509. [4] 王玉, 开晓山, 朱士信. 一种 $ {2}^{m} $元域上量子纠错码的构造方法[J]. 电子与信息学报, 2023, 45(5): 1731–1736. doi: 10.11999/JEIT221145.WANG Yu, KAI Xiaoshan, and ZHU Shixin. A construction method of quantum error-correcting codes over $ {{\mathrm{F}}_{{2}^{m}}}^{} $[J]. Journal of Electronics & Information Technology, 2023, 45(5): 1731–1736. doi: 10.11999/JEIT221145. [5] CHEN Bocong, LING San, and ZHANG Guanghui. Application of constacyclic codes to quantum MDS codes[J]. IEEE Transactions on Information Theory, 2015, 61(3): 1474–1484. doi: 10.1109/TIT.2015.2388576. [6] BRUN T, DEVETAK I, and HSIEH M H. Correcting quantum errors with entanglement[J]. Science, 2006, 314(5798): 436–439. doi: 10.1126/science.1131563. [7] LI Yang, WAN Ruhao, and ZHU Shixin. MDS codes with Euclidean and Hermitian hulls of flexible dimensions and their applications to EAQECCs[J]. Quantum Information Processing, 2023, 22(153): 1–33. doi: 10.1007/s11128-023-03900-x. [8] JIANG Wan, ZHU Shixin, and CHEN Xiaojing. Optimal entanglement-assisted quantum codes with larger minimum distance[J]. IEEE Communications Letters, 2021, 25(1): 45–48. doi: 10.1109/LCOMM.2020.3025012. [9] BISWAS S and BHAINTWAL M. A new construction of quantum codes from quasi-cyclic codes over finite fields[J]. Indian Journal of Pure and Applied Mathematics, 2023, 54(2): 375–388. doi: 10.1007/s13226-022-00259-0. [10] CHEN Xiaojing, ZHU Shixin, and JIANG Wan. Cyclic codes and some new entanglement-assisted quantum MDS codes[J]. Designs, Codes and Cryptography, 2021, 89(11): 2533–2551. doi: 10.1007/s10623-021-00935-y. [11] GUENDA K, JITMAN S, and GULLIVER T A. Constructions of good entanglement-assisted quantum error correcting codes[J]. Designs, Codes and Cryptography, 2018, 86(1): 121–136. doi: 10.1007/s10623-017-0330-z. [12] GAO Jian, ZHANG Yaozong, LIU Ying, et al. New MDS EAQECCs derived from constacyclic codes over $ {\mathbb{F}}_{{q}^{2}}+v{\mathbb{F}}_{{q}^{2}} $[J]. Discrete Mathematics, 2023, 346(9): 113513. doi: 10.1016/j.disc.2023.113513. [13] FANG Weijun, FU Fangwei, LI Lanqiang, et al. Euclidean and Hermitian hulls of MDS codes and their applications to EAQECCs[J]. IEEE Transactions on Information Theory, 2020, 66(6): 3527–3537. doi: 10.1109/TIT.2019.2950245. [14] CAO Meng. Several new families of MDS EAQECCs with much larger dimensions and related application to EACQCs[J]. Quantum Information Processing, 2023, 22(12): 447. doi: 10.1007/s11128-023-04197-6. [15] LUO Gaojun, CAO Xiwang, and CHEN Xiaojing. MDS codes with hulls of arbitrary dimensions and their quantum error correction[J]. IEEE Transactions on Information Theory, 2019, 65(5): 2944–2952. doi: 10.1109/TIT.2018.2874953. [16] CAO Meng. MDS codes with Galois hulls of arbitrary dimensions and the related entanglement-assisted quantum error correction[J]. IEEE Transactions on Information Theory, 2021, 67(12): 7964–7984. doi: 10.1109/TIT.2021.3117562. [17] PEREIRA F R F and MANCINI S. Entanglement-assisted quantum codes from cyclic codes[J]. Entropy, 2023, 25(1): 37. doi: 10.3390/e25010037. [18] GALINDO C, HERNANDO F, and RUANO D. Entanglement-assisted quantum error-correcting codes from RS codes and BCH codes with extension degree 2[J]. Quantum Information Processing, 2021, 20(5): 158. doi: 10.1007/s11128-021-03101-4. [19] ZHU Shixin and WAN Ruhao. On the existence of Galois self-dual GRS and TGRS codes[J]. Finite Fields and Their Applications, 2025, 105: 102608. doi: 10.1016/j.ffa.2025.102608. [20] HUANG Daitao, YUE Qin, NIU Yongfeng, et al. MDS or NMDS self-dual codes from Twisted generalized Reed–Solomon codes[J]. Designs, Codes and Cryptography, 2021, 89(9): 2195–2209. doi: 10.1007/s10623-021-00910-7. [21] BEELEN P, BOSSERT M, PUCHINGER S, et al. Structural properties of twisted Reed-Solomon codes with applications to cryptography[C]. IEEE International Symposium on Information Theory, Vail, USA, 2018: 946–950. doi: 10.1109/ISIT.2018.8437923. [22] LIU Hongwei and LIU Shengwei. Construction of MDS twisted Reed-Solomon codes and LCD MDS codes[J]. Designs, Codes and Cryptography, 2021, 89(9): 2051–2065. doi: 10.1007/s10623-021-00899-z. [23] LAVAUZELLE J and RENNER J. Cryptanalysis of a system based on twisted Reed-Solomon codes[J]. Designs, Codes and Cryptography, 2020, 88(7): 1285–1300. doi: 10.1007/s10623-020-00747-6. [24] ZHU Canze and LIAO Qunying. The non-GRS properties for the twisted generalized Reed-Solomon code and its extended code[Z]. arXiv: 2204.11955, 2022. doi: 10.48550/arXiv.2204.11955. [25] ZHU Canze and LIAO Qunying. The ( $ + $)-extended twisted generalized Reed-Solomon code[J]. Discrete Mathematics, 2024, 347(2): 113749. doi: 10.1016/j.disc.2023.113749. [26] LIU Hualu and LIU Xiusheng. New EAQEC codes from cyclic codes over $ {\mathbb{F}}_{q}+u{\mathbb{F}}_{q} $[J]. Quantum Information Processing, 2020, 19(3): 85. doi: 10.1007/s11128-020-2580-3. [27] GRASSL M, HUBER F, and WINTER A. Entropic proofs of singleton bounds for quantum error-correcting codes[J]. IEEE Transactions on Information Theory, 2022, 68(6): 3942–3950. doi: 10.1109/TIT.2022.3149291. [28] GALINDO C, HERNANDO F, MATSUMOTO R, et al. Entanglement-assisted quantum error-correcting codes over arbitrary finite fields[J]. Quantum Information Processing, 2019, 18(4): 116. doi: 10.1007/s11128-019-2234-5. [29] BEELEN P, PUCHINGER S, and ROSENKILDE J. Twisted reed-Solomon codes[C]. IEEE International Symposium on Information Theory, Aachen, Germany, 2017: 336–340. doi: 10.1109/ISIT.2017.8006545. [30] LU Liangdong, MA Wenping, and GUO Luobin. Two families of entanglement-assisted quantum MDS codes from constacyclic codes[J]. International Journal of Theoretical Physics, 2020, 59(6): 1657–1667. doi: 10.1007/s10773-020-04433-0. [31] SARI M and KÖROĞLU M E. New entanglement-assisted quantum MDS codes with maximal entanglement[J]. International Journal of Theoretical Physics, 2021, 60(1): 243–253. doi: 10.1007/s10773-020-04682-z. [32] FAN Jihao, CHEN Hanwu, and XU Juan. Constructions of $ \mathrm{q} $-ary entanglement-assisted quantum MDS codes with minimum distance greater than $ q+1 $[J]. Quantum Information & Computation, 2016, 16(5/6): 423–434. [33] SARI M and KOLOTOĞLU E. An application of constacyclic codes to entanglement-assisted quantum MDS codes[J]. Computational and Applied Mathematics, 2019, 38(2): 75. doi: 10.1007/s40314-019-0837-1. [34] LI Ruihu, GUO Guanmin, SONG Hao, et al. New constructions of entanglement-assisted quantum MDS codes from negacyclic codes[J]. International Journal of Quantum Information, 2019, 17(3): 1950022. doi: 10.1142/S0219749919500229. [35] LIU Yang, LI Ruihu, LV Liangdong, et al. Application of constacyclic codes to entanglement-assisted quantum maximum distance separable codes[J]. Quantum Information Processing, 2018, 17(8): 210. doi: 10.1007/s11128-018-1978-7. [36] PANG Binbin, ZHU Shixin, LI Fulin, et al. New entanglement-assisted quantum MDS codes with larger minimum distance[J]. Quantum Information Processing, 2020, 19(7): 207. doi: 10.1007/s11128-020-02698-2. -
表(2)
计量
- 文章访问数: 135
- HTML全文浏览量: 78
- PDF下载量: 35
- 被引次数: 0