高级搜索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

近场感知通信一体化系统的感知与通信性能帕累托优化

张广驰 谢志立 崔苗 武庆庆

张广驰, 谢志立, 崔苗, 武庆庆. 近场感知通信一体化系统的感知与通信性能帕累托优化[J]. 电子与信息学报. doi: 10.11999/JEIT250231
引用本文: 张广驰, 谢志立, 崔苗, 武庆庆. 近场感知通信一体化系统的感知与通信性能帕累托优化[J]. 电子与信息学报. doi: 10.11999/JEIT250231
ZHANG Guangchi, XIE Zhili, CUI Miao, WU Qingqing. Pareto Optimization of Sensing and Communication Performance of Near-field Integrated Sensing and Communication System[J]. Journal of Electronics & Information Technology. doi: 10.11999/JEIT250231
Citation: ZHANG Guangchi, XIE Zhili, CUI Miao, WU Qingqing. Pareto Optimization of Sensing and Communication Performance of Near-field Integrated Sensing and Communication System[J]. Journal of Electronics & Information Technology. doi: 10.11999/JEIT250231

近场感知通信一体化系统的感知与通信性能帕累托优化

doi: 10.11999/JEIT250231 cstr: 32379.14.JEIT250231
基金项目: 广东省基础与应用基础研究基金(2023A1515011980, 2023A1515140003),广东省科技计划( No.2022A0505050023)
详细信息
    作者简介:

    张广驰:男,教授,研究方向为无线通信与人工智能

    谢志立:男,研究生,研究方向为通感一体化波束形成设计

    崔苗:女,副教授,研究方向为新一代无线通信技术

    武庆庆:男,副教授,研究方向为通感一体化和无人机空地网络

    通讯作者:

    崔苗 cuimiao@gdut.edu.cn

  • 中图分类号: TN929.5

Pareto Optimization of Sensing and Communication Performance of Near-field Integrated Sensing and Communication System

Funds: Guangdong Basic and Applied Basic Research Foundation (2023A1515011980, 2023A1515140003), Guangdong Science and Technology Plan Project (2022A0505050023)
  • 摘要: 感知通信一体化(ISAC)是第6代移动通信的重要研究方向之一,它使无线通信网络具备了感知能力。超大规模多输入多输出(XL-MIMO)的研究使得通信研究从远场转向近场,但ISAC在近场区域的研究还不充分。该文针对近场区域中存在散射体干扰的场景,研究了多用户XL-MIMO ISAC系统的波束成形设计,致力于探讨ISAC系统中通感性能的折衷问题。为此,该文首先导出了感知互信息的一般形式,并通过引入辅助变量和舒尔补(Schur complement)将其转化为半定规划问题进行优化。针对复杂的多用户信干噪比(SINR)表达式,利用Dinkelbach算法将其转化为凸函数形式,以降低优化难度。进一步,提出一种多目标优化框架,旨在同时最大化多用户信干噪比和感知互信息,并通过构建系统效用函数求解帕累托最优解。仿真结果表明,所提方法能够平衡用户通信和目标感知性能,实现两者之间的最优折衷。研究还揭示了散射体在距离上对感知目标的干扰规律,为ISAC系统的设计提供了重要参考。
  • 图  1  XL-MIMO ISAC系统模型

    图  2  通信、感知性能随权重变化图

    图  3  感知互信息和多用户通信速率近远场对比关系图

    图  4  用户平均速率随SNR变化关系图

    图  5  目标感知互信息随SNR变化关系图

    图  6  感知目标与散射体不同距离下的对比关系图

  • [1] LU Haiquan, ZENG Yong, YOU Changsheng, et al. A tutorial on near-field XL-MIMO communications toward 6G[J]. IEEE Communications Surveys & Tutorials, 2024, 26(4): 2213–2257. doi: 10.1109/COMST.2024.3387749.
    [2] MA Dingyou, SHLEZINGER N, HUANG Tianyao, et al. Joint radar-communication strategies for autonomous vehicles: Combining two key automotive technologies[J]. IEEE Signal Processing Magazine, 2020, 37(4): 85–97. doi: 10.1109/MSP.2020.2983832.
    [3] ZHANG J A, LIU Fan, MASOUROS C, et al. An overview of signal processing techniques for joint communication and radar sensing[J]. IEEE Journal of Selected Topics in Signal Processing, 2021, 15(6): 1295–1315. doi: 10.1109/JSTSP.2021.3113120.
    [4] YANG Wanning, LI Ming, and LIU Qian. A practical channel estimation strategy for XL-MIMO communication systems[J]. IEEE Communications Letters, 2023, 27(6): 1580–1583. doi: 10.1109/LCOMM.2023.3266821.
    [5] LU Haiquan and ZENG Yong. Communicating with extremely large-scale array/surface: Unified modeling and performance analysis[J]. IEEE Transactions on Wireless Communications, 2022, 21(6): 4039–4053. doi: 10.1109/TWC.2021.3126384.
    [6] DE CARVALHO E, ALI A, AMIRI A, et al. Non-stationarities in extra-large-scale massive MIMO[J]. IEEE Wireless Communications, 2020, 27(4): 74–80. doi: 10.1109/MWC.001.1900157.
    [7] DONG Zhenjun and ZENG Yong. Near-field spatial correlation for extremely large-scale array communications[J]. IEEE Communications Letters, 2022, 26(7): 1534–1538. doi: 10.1109/LCOMM.2022.3170735.
    [8] CHANG Hengtai, WANG Chengxiang, BIAN Ji, et al. A novel 3D beam domain channel model for UAV massive MIMO communications[J]. IEEE Transactions on Wireless Communications, 2023, 22(8): 5431–5445. doi: 10.1109/TWC.2023.3233961.
    [9] HAN Yu, JIN Shi, WEN Chaokai, et al. Channel estimation for extremely large-scale massive MIMO systems[J]. IEEE Wireless Communications Letters, 2020, 9(5): 633–637. doi: 10.1109/LWC.2019.2963877.
    [10] ZHANG Yunpu, WU Xun, and YOU Changsheng. Fast near-field beam training for extremely large-scale array[J]. IEEE Wireless Communications Letters, 2022, 11(12): 2625–2629. doi: 10.1109/LWC.2022.3212344.
    [11] LIU Fan, MASOUROS C, LI Ang, et al. MU-MIMO communications with MIMO radar: From co-existence to joint transmission[J]. IEEE Transactions on Wireless Communications, 2018, 17(4): 2755–2770. doi: 10.1109/TWC.2018.2803045.
    [12] LIU Fan, ZHOU Longfei, MASOUROS C, et al. Toward dual-functional radar-communication systems: Optimal waveform design[J]. IEEE Transactions on Signal Processing, 2018, 66(16): 4264–4279. doi: 10.1109/TSP.2018.2847648.
    [13] TSINOS C G, ARORA A, CHATZINOTAS S, et al. Joint transmit waveform and receive filter design for dual-function radar-communication systems[J]. IEEE Journal of Selected Topics in Signal Processing, 2021, 15(6): 1378–1392. doi: 10.1109/JSTSP.2021.3112295.
    [14] DOU Chenglong, HUANG Ning, WU Yuan, et al. Integrated sensing and communication enabled multidevice multitarget cooperative sensing: A fairness-aware design[J]. IEEE Internet of Things Journal, 2024, 11(17): 29190–29201. doi: 10.1109/JIOT.2024.3406930.
    [15] LI Jin, ZHOU Gui, GONG Tantao, et al. A framework for mutual information-based MIMO integrated sensing and communication beamforming design[J]. IEEE Transactions on Vehicular Technology, 2024, 73(6): 8352–8366. doi: 10.1109/TVT.2024.3355899.
    [16] MENG Chunwei, WEI Zhiqing, MA Dingyou, et al. Multiobjective-optimization-based transmit beamforming for multitarget and multiuser MIMO-ISAC systems[J]. IEEE Internet of Things Journal, 2024, 11(18): 29260–29274. doi: 10.1109/JIOT.2024.3413687.
    [17] WANG Zhaolin, MU Xidong, and LIU Yuanwei. Near-field integrated sensing and communications[J]. IEEE Communications Letters, 2023, 27(8): 2048–2052. doi: 10.1109/LCOMM.2023.3280132.
    [18] QU Kaiqian, GUO Shuaishuai, SAEED N, et al. Near-field integrated sensing and communication: Performance analysis and beamforming design[J]. IEEE Open Journal of the Communications Society, 2024, 5: 6353–6366. doi: 10.1109/OJCOMS.2024.3470844.
    [19] ZHAO Boqun, OUYANG Chongjun, LIU Yuanwei, et al. Modeling and analysis of near-field ISAC[J]. IEEE Journal of Selected Topics in Signal Processing, 2024, 18(4): 678–693. doi: 10.1109/JSTSP.2024.3386054.
    [20] YANG Yang and BLUM B S. MIMO radar waveform design based on mutual information and minimum mean-square error estimation[J]. IEEE Transactions on Aerospace and Electronic Systems, 2007, 43(1): 330–343. doi: 10.1109/TAES.2007.357137.
    [21] GAO Peng, LIAN Lixiang, and YU Jinpei. Cooperative ISAC with direct localization and rate-splitting multiple access communication: A Pareto optimization framework[J]. IEEE Journal on Selected Areas in Communications, 2023, 41(5): 1496–1515. doi: 10.1109/JSAC.2023.3240714.
    [22] LUO Zhiquan, MA W K, SO A M C, et al. Semidefinite relaxation of quadratic optimization problems[J]. IEEE Signal Processing Magazine, 2010, 27(3): 20–34. doi: 10.1109/MSP.2010.936019.
  • 加载中
图(6)
计量
  • 文章访问数:  25
  • HTML全文浏览量:  14
  • PDF下载量:  2
  • 被引次数: 0
出版历程
  • 收稿日期:  2025-04-02
  • 修回日期:  2025-09-15
  • 网络出版日期:  2025-09-20

目录

    /

    返回文章
    返回