高级搜索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

极简环形忆阻混沌神经网络的动力学分析与同步控制

赖强 秦铭宏

赖强, 秦铭宏. 极简环形忆阻混沌神经网络的动力学分析与同步控制[J]. 电子与信息学报. doi: 10.11999/JEIT250212
引用本文: 赖强, 秦铭宏. 极简环形忆阻混沌神经网络的动力学分析与同步控制[J]. 电子与信息学报. doi: 10.11999/JEIT250212
LAI Qiang, QIN Minghong. Dynamic Analysis and Synchronization Control of Extremely Simple Cyclic Memristive Chaotic Neural Network[J]. Journal of Electronics & Information Technology. doi: 10.11999/JEIT250212
Citation: LAI Qiang, QIN Minghong. Dynamic Analysis and Synchronization Control of Extremely Simple Cyclic Memristive Chaotic Neural Network[J]. Journal of Electronics & Information Technology. doi: 10.11999/JEIT250212

极简环形忆阻混沌神经网络的动力学分析与同步控制

doi: 10.11999/JEIT250212 cstr: 32379.14.JEIT250212
基金项目: 国家自然科学基金(62366014)
详细信息
    作者简介:

    赖强:男,教授,研究方向为混沌理论与应用、信息安全、忆阻电路、神经网络、多智能体系统、人工智能

    秦铭宏:男,硕士生,研究方向为混沌理论与应用、信息安全、忆阻电路、神经网络、人工智能

    通讯作者:

    赖强 laiqiang87@126.com

  • 中图分类号: TN601; TN710.2

Dynamic Analysis and Synchronization Control of Extremely Simple Cyclic Memristive Chaotic Neural Network

Funds: The National Natural Science Foundation of China (62366014)
  • 摘要: 忆阻器可作为突触引入人工神经网络,提升神经元间连接的合理性,并丰富网络的类脑化动力学行为。该文基于忆阻器提出了一种仅含单向突触连接的极简环形神经网络的混沌化方法,以三节点神经网络为例构造了一类动力学行为丰富且结构简单的忆阻环形神经网络。基于单参数和双参数分岔图以及Lyapunov指数谱,研究了这类网络关于忆阻器耦合强度与内部参数的丰富动力学演化过程,如倍周期分岔与反倍周期分岔。借助相平面图和吸引盆刻画了网络的丰富多稳态行为,如点吸引子与点吸引子、点吸引子与周期吸引子、点吸引子与混沌吸引子。依赖于忆阻器耦合强度的多变量调幅控制行为也被发现和研究。通过电子电路实验检验了所提出网络的物理存在性。此外,针对所提出网络潜在的应用需求,设计了一种新型多幂次趋近律,用于在固定时间内实现混沌同步。数值仿真结果表明了同步策略的可行性与有效性。
  • 图  1  极简环形忆阻混沌神经网络建模示意图

    图  2  网络(B)在参数$a = 1.60,b = 4.00,p = 4$并且初值[0.1 0.1 0.1 0.1]时的数值结果

    图  3  表1中各环形神经网络的${x_1} - {x_2} - {x_3}$相平面图

    图  4  曲线$ {f_1}({\tilde x_1},{\tilde x_2}) $和$ {f_2}({\tilde x_1},{\tilde x_2}) $在$ \{ ({\tilde x_1},{\tilde x_2})|{\tilde x_1} \in [ - 20,5],{\tilde x_2} \in [ - 4,4]\} $区域内的轨迹及交点

    图  5  当参数$p = 4$时,网络(B)关于参数$a \in [1.6,1.75]$和$b \in [3.6,4.00]$的双参数动力学演化过程

    图  6  参数$p = 4$并且初值[0.1 0.1 0.1 0.1]时,网络(B)关于不同参数$ b $的倍周期分岔过程

    图  7  当参数$a = 1.6,b = 4$并且初值[0.1 0.1 0.1 0.1](红色)、[0.1 0.1 0.1 -10](蓝色)时,网络(B)关于不同参数$p$的数值结果

    图  8  网络(B)关于不同参数$p$的多稳态

    图  9  表1中环形忆阻混沌神经网络的多稳态的吸引盆示例

    图  10  网络(E)依赖于参数$p$的调幅控制行为

    图  11  模拟电路实现

    图  12  硬件电路实现

    图  13  驱动网络和响应网络(9)在不同初值时的固定时间同步误差

    图  14  不同固定时间趋近律作用下的滑模曲线

    表  1  图1中各环形神经网络的模型、参数和初值

    编号 模型 参数 初值 图像
    A $ \left\{ {\begin{array}{*{20}{l}} {{{\dot x}_1} = - {x_1} - 4\tanh ({x_3})} \\ {{{\dot x}_2} = - {x_2} + 2.5\tanh ({x_1})} \\ {{{\dot x}_3} = - {x_3} + 4\tanh ({x_2})} \end{array}} \right. $ - [0.1 0.1 0.1] 图3(a)
    B $ \left\{ {\begin{array}{*{20}{l}} {{{\dot x}_1} = - {x_1} + p( - a - b\tanh (\varphi ))\tanh ({x_3})} \\ {{{\dot x}_2} = - {x_2} + 2.5\tanh ({x_1})} \\ {{{\dot x}_3} = - {x_3} + 4\tanh ({x_2})} \\ {\dot \varphi = - \varphi + \tanh ({x_3})} \end{array}} \right. $ a = 1.6, b = 4,
    p = 4
    [0.1 0.1 0.1 0.1] 图3(b)
    C $ \left\{ {\begin{array}{*{20}{l}} {{{\dot x}_1} = - {x_1} + p(a + b\tanh (u))\tanh ({x_3})} \\ {{{\dot x}_2} = - {x_2} + q(c + d\tanh (v))\tanh ({x_1})} \\ {{{\dot x}_3} = - {x_3} - 1.6\tanh ({x_2})} \\ {\dot u = - u + \tanh ({x_3})} \\ {\dot v = - v + \tanh ({x_1})} \end{array}} \right. $ a = 8, b = –4.5,
    c = 1.25, d = 2.6
    p = 2, q = 2.5
    [0.1 0.1 0.1 0.1 0.1] 图3(c)
    D $ \left\{ {\begin{array}{*{20}{l}} {{{\dot x}_1} = - {x_1} + p(a + b\tanh (u))\tanh ({x_3})} \\ {{{\dot x}_2} = - {x_2} + q(c + d\tanh (v))\tanh ({x_1})} \\ {{{\dot x}_3} = - {x_3} + k(e + f\tanh (w))\tanh ({x_2})} \\ {\dot u = - u + \tanh ({x_3})} \\ {\dot v = - v + \tanh ({x_1})} \\ {\dot w = - w + \tanh ({x_2})} \end{array}} \right. $ a = 2.4, b = –6,
    c = 2, d = –-5,
    e = 6, f = –9,
    p = 1, q = 1,
    k = –1
    [0.1 0.1 0.1 0.1 0.1 0.1] 图3(d)
    E $ \left\{ {\begin{array}{*{20}{l}} {{{\dot x}_1} = - {x_1} + p(a + b\tanh (\varphi ))\tanh ({x_4})} \\ {{{\dot x}_2} = - {x_2} - 1.8\tanh ({x_1})} \\ {{{\dot x}_3} = - {x_3} - 8\tanh ({x_2})} \\ {{{\dot x}_4} = - {x_4} + 5\tanh ({x_3})} \\ {\dot \varphi = - \varphi + \tanh ({x_4})} \end{array}} \right. $ a = –2, b = 3,
    p = 0.2
    [0.1 0.1 0.1 0.1 0.1] 图3(e)
    F $ \left\{ {\begin{array}{*{20}{l}} {{{\dot x}_1} = - {x_1} + p(a + b\tanh (\varphi ))\tanh ({x_5})} \\ {{{\dot x}_2} = - {x_2} - 5\tanh ({x_1})} \\ {{{\dot x}_3} = - {x_3} - 4\tanh ({x_2})} \\ {{{\dot x}_4} = - {x_4} - 2.4\tanh ({x_3})} \\ {{{\dot x}_5} = - {x_5} + 0.25\tanh ({x_4})} \\ {\dot \varphi = - \varphi + \tanh ({x_5})} \end{array}} \right. $ a = 0.5, b = –3.2,
    p = 2.5
    [0.1 0.1 0.1 0.1 0.1 0.1] 图3(f)
    下载: 导出CSV

    表  2  网络(B)的平衡点类型与对应的特征值

    平衡点特征值类型
    $ {O_1}(0,0,{\text{0,0}}) $$ - 1.000, - 5.000,1.000 \pm 3.464i $Index-2不稳定鞍点
    $ {O_2}( - 0.046, - 0.116,{\text{ - 0}}{\text{.462, - 0}}{\text{.432}}) $$ 1.639, - 3.573, - 1.033 \pm 2.607i $Index-1不稳定鞍点
    $ {O_3}( - 5.776, - 2.500, - 3.946, - 0.999) $$ - 0.982, - 1.018, - 1.000 \pm 0.018i $稳定焦点
    下载: 导出CSV
  • [1] KROGH A. What are artificial neural networks?[J]. Nature Biotechnology, 2008, 26(2): 195–197. doi: 10.1038/nbt1386.
    [2] 王春华, 蔺海荣, 孙晶如, 等. 基于忆阻器的混沌、存储器及神经网络电路研究进展[J]. 电子与信息学报, 2020, 42(4): 795–810. doi: 10.11999/JEIT190821.

    WANG Chunhua, LIN Hairong, SUN Jingru, et al. Research progress on chaos, memory and neural network circuits based on memristor[J]. Journal of Electronics & Information Technology, 2020, 42(4): 795–810. doi: 10.11999/JEIT190821.
    [3] 王璇, 杜健嵘, 李志军, 等. 串扰忆阻突触异质离散神经网络的共存放电与同步行为[J]. 物理学报, 2024, 73(11): 110503. doi: 10.7498/aps.73.20231972.

    WANG Xuan, DU Jianrong, LI Zhijun, et al. Coexisting discharge and synchronization of heterogeneous discrete neural network with crosstalk memristor synapses[J]. Acta Physica Sinica, 2024, 73(11): 110503. doi: 10.7498/aps.73.20231972.
    [4] LI Fangyuan, QIN Wangsheng, XI Minqi, et al. Plane coexistence behaviors for Hopfield neural network with two-memristor-interconnected neurons[J]. Neural Networks, 2025, 183: 107049. doi: 10.1016/j.neunet.2024.107049.
    [5] 温新宇, 王亚赛, 何毓辉, 等. 忆阻类脑计算[J]. 物理学报, 2022, 71(14): 140501. doi: 10.7498/aps.71.20220666.

    WEN Xinyu, WANG Yasai, HE Yuhui, et al. Memristive brain-like computing[J]. Acta Physica Sinica, 2022, 71(14): 140501. doi: 10.7498/aps.71.20220666.
    [6] 赖强, 秦铭宏. 基于忆阻电磁辐射的极简环形HNN动力学行为增强研究[J]. 贵州师范大学学报: 自然科学版, 2025, 43(3): 1–11. doi: 10.16614/j.gznuj.zrb.2025.03.001.

    LAI Qiang and QIN Minghong. Enhanced dynamics of an extremely simple cyclic HNN based on memristive electromagnetic radiation[J]. Journal of Guizhou Normal University: Natural Sciences, 2025, 43(3): 1–11. doi: 10.16614/j.gznuj.zrb.2025.03.001.
    [7] JIN Peipei, WANG Guangyi, LIANG Yan, et al. Neuromorphic dynamics of Chua corsage memristor[J]. IEEE Transactions on Circuits and Systems I: Regular Papers, 2021, 68(11): 4419–4432. doi: 10.1109/TCSI.2021.3121676.
    [8] LAI Qiang, LIU Yijin, and FORTUNA L. Dynamical analysis and fixed-time synchronization for secure communication of hidden multiscroll memristive chaotic system[J]. IEEE Transactions on Circuits and Systems I: Regular Papers, 2024, 71(10): 4665–4675. doi: 10.1109/TCSI.2024.3434551.
    [9] 王梦蛟, 杨琛, 贺少波, 等. 一种新型复合指数型局部有源忆阻器耦合的Hopfield神经网络[J]. 物理学报, 2024, 73(13): 130501. doi: 10.7498/aps.73.20231888.

    WANG Mengjiao, YANG Chen, HE Shaobo, et al. A novel compound exponential locally active memristor coupled Hopfield neural network[J]. Acta Physica Sinica, 2024, 73(13): 130501. doi: 10.7498/aps.73.20231888.
    [10] DING Dawei, XIAO Heng, YANG Zongli, et al. Coexisting multi-stability of Hopfield neural network based on coupled fractional-order locally active memristor and its application in image encryption[J]. Nonlinear Dynamics, 2022, 108(4): 4433–4458. doi: 10.1007/s11071-022-07371-0.
    [11] BAO Han, CHEN Zhuguan, MA Jun, et al. Planar homogeneous coexisting hyperchaos in Bi-Memristor cyclic Hopfield neural network[J]. IEEE Transactions on Industrial Electronics, 2024, 71(12): 16398–16408. doi: 10.1109/TIE.2024.3387058.
    [12] LAI Qiang and YANG Liang. Discrete memristor applied to construct neural networks with homogeneous and heterogeneous coexisting attractors[J]. Chaos, Solitons & Fractals, 2023, 174: 113807. doi: 10.1016/j.chaos.2023.113807.
    [13] WAN Qiuzhen, CHEN Simiao, LIU Tieqiao, et al. A novel locally active memristive autapse-coupled Hopfield neural network under electromagnetic radiation[J]. Integration, 2025, 103: 102410. doi: 10.1016/j.vlsi.2025.102410.
    [14] LI Yongxin, LI Chunbiao, ZHANG Sen, et al. Offset boosting-oriented construction of multi-Scroll attractor via a memristor model[J]. IEEE Transactions on Circuits and Systems I: Regular Papers, 2025, 72(2): 918–931. doi: 10.1109/TCSI.2024.3455350.
    [15] 武花干, 边逸轩, 陈墨, 等. 忆阻耦合异构忆阻细胞神经网络的多稳态与相位同步研究[J]. 电子与信息学报, 2024, 46(9): 3818–3826. doi: 10.11999/JEIT240010.

    WU Huagan, BIAN Yixuan, CHEN Mo, et al. Multistable state and phase synchronization of memristor-coupled heterogeneous memristive cellular neural network[J]. Journal of Electronics & Information Technology, 2024, 46(9): 3818–3826. doi: 10.11999/JEIT240010.
    [16] PARASTESH F, JAFARI S, AZARNOUSH H, et al. Chimera in a network of memristor-based Hopfield neural network[J]. The European Physical Journal Special Topics, 2019, 228(10): 2023–2033. doi: 10.1140/epjst/e2019-800240-5.
    [17] 贾美美, 曹佳伟, 白明明. 新型忆阻耦合异质神经元的放电模式和预定义时间混沌同步[J]. 物理学报, 2024, 73(17): 170502. doi: 10.7498/aps.73.20240872.

    JIA Meimei, CAO Jiawei, and BAI Mingming. Firing modes and predefined-time chaos synchronization of novel memristor-coupled heterogeneous neuron[J]. Acta Physica Sinica, 2024, 73(17): 170502. doi: 10.7498/aps.73.20240872.
    [18] ZHANG Yuman and LI Yuxia. Nonlinear dynamics and sliding mode control for global fixed-time synchronization of a novel 2×2 memristor-based cellular neural network[J]. Chaos, Solitons & Fractals, 2024, 189: 115611. doi: 10.1016/j.chaos.2024.115611.
    [19] YU Fei, KONG Xinxin, YAO Wei, et al. Dynamics analysis, synchronization and FPGA implementation of multiscroll Hopfield neural networks with non-polynomial memristor[J]. Chaos, Solitons & Fractals, 2024, 179: 114440. doi: 10.1016/j.chaos.2023.114440.
    [20] HOPFIELD J J. Neural networks and physical systems with emergent collective computational abilities[J]. Proceedings of the National Academy of Sciences of the United States of America, 1982, 79(8): 2554–2558. doi: 10.1073/pnas.79.8.2554.
    [21] YANG Xiaosong. 3-D cellular neural networks with cyclic connections cannot exhibit chaos[J]. International Journal of Bifurcation and Chaos, 2008, 18(4): 1227–1230. doi: 10.1142/S0218127408020951.
  • 加载中
图(14) / 表(2)
计量
  • 文章访问数:  151
  • HTML全文浏览量:  82
  • PDF下载量:  48
  • 被引次数: 0
出版历程
  • 收稿日期:  2025-03-31
  • 修回日期:  2025-07-02
  • 网络出版日期:  2027-07-09

目录

    /

    返回文章
    返回