高级搜索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

低轨卫星通感一体化系统中的隐蔽通信传输方案

朱政宇 欧阳泽彬 潘高峰 王帅 孙钢灿 楚征 郝凤宇

朱政宇, 欧阳泽彬, 潘高峰, 王帅, 孙钢灿, 楚征, 郝凤宇. 低轨卫星通感一体化系统中的隐蔽通信传输方案[J]. 电子与信息学报. doi: 10.11999/JEIT250208
引用本文: 朱政宇, 欧阳泽彬, 潘高峰, 王帅, 孙钢灿, 楚征, 郝凤宇. 低轨卫星通感一体化系统中的隐蔽通信传输方案[J]. 电子与信息学报. doi: 10.11999/JEIT250208
ZHU Zhengyu, OUYANG Zebin, PAN Gaofeng, WANG Shuai, SUN Gangcan, CHU Zheng, HAO Fengyu. Covert Communication Transmission Scheme in Low Earth Orbit Satellite Integrated Sensing and Communication Systems[J]. Journal of Electronics & Information Technology. doi: 10.11999/JEIT250208
Citation: ZHU Zhengyu, OUYANG Zebin, PAN Gaofeng, WANG Shuai, SUN Gangcan, CHU Zheng, HAO Fengyu. Covert Communication Transmission Scheme in Low Earth Orbit Satellite Integrated Sensing and Communication Systems[J]. Journal of Electronics & Information Technology. doi: 10.11999/JEIT250208

低轨卫星通感一体化系统中的隐蔽通信传输方案

doi: 10.11999/JEIT250208
基金项目: 西安电子科技大学空天地一体化综合业务网全国重点实验室(ISN25-24),河南省高校科技创新人才支持计划(23HASTIT019),河南省自然科学基金(232300421097),宁波市自然科学基金(2024J233)
详细信息
    作者简介:

    朱政宇:男,副教授,研究方向为智能超表面、通感一体化、语义通信等

    欧阳泽彬:男,硕士生,研究方向为隐蔽通信、卫星通信等

    潘高峰:男,教授,研究方向为空天信息网络、无线安全通信等

    王帅:男,教授,研究方向为卫星通信、抗侦测通信等

    孙钢灿:男,教授,研究方向为宽带无线通信、智能物联网等

    楚征:男,副教授,研究方向为智能超表面、人工智能驱动的未来网络等

    郝凤宇:男,高级工程师,研究方向为网络安全、信息安全等

    通讯作者:

    孙钢灿 iegcsun@zzu.edu.cn

  • 中图分类号: TN927.2

Covert Communication Transmission Scheme in Low Earth Orbit Satellite Integrated Sensing and Communication Systems

Funds: The State Key Laboratory of Integrated Services Networks (ISN25-24, Xidian University), The Program for Science Technology Innovation The Talents in Universities of Henan Province (23HASTIT019), The Natural Science Foundation of Henan Province (232300421097), Ningbo Natural Science Foundation (2024J233)
  • 摘要: 该文考虑一种低轨(LEO)卫星通感一体化系统中的隐蔽通信传输方案,在确保系统的感知性能不低于预设阈值的同时,利用雷达波束干扰监听者,提高卫星通信的隐蔽性。首先,提出了LEO卫星通感一体化系统的系统模型,分析了系统中的隐蔽性约束。其次,在此基础之上,构建了以最大化多用户隐蔽通信速率总和为目标函数,以卫星功率上限、雷达功率上限、感知性能下限和隐蔽性要求为约束的优化问题。该优化问题非凸且变量耦合严重,无法直接求解,可以采用交替优化算法和连续凸近似(SCA)算法等方式对原问题进行转换和迭代求解。最后仿真结果表明,与无雷达波束干扰的卫星隐蔽通信系统相比,所提出的有雷达波束干扰的系统能够有效降低监听者的检测性能,从而提高通信的隐蔽性和速率。
  • 图  1  LEO卫星通感一体化系统

    图  2  系统中多用户隐蔽通信速率和迭代次数的关系($ {P}_{\mathrm{t}} $=66 dBm)

    图  3  系统中多用户隐蔽通信速率和卫星天线个数的关系

    图  4  系统中Eve的检测性能和雷达功率的关系

    图  5  系统中多用户隐蔽通信速率和卫星功率的关系

    1  求解问题式(28)的交替优化算法

     输入:$ {\boldsymbol{h}}_{k},{\boldsymbol{h}}_{\mathrm{e}},{\boldsymbol{g}}_{k},{\sigma }_{k},{\sigma }_{0},\boldsymbol{A},\boldsymbol{Q},{\sigma }_{\mathrm{r}},\boldsymbol{I},{\boldsymbol{g}}_{\mathrm{e}},{\sigma }_{\mathrm{e}},{\gamma }_{\mathrm{e}}^{*},{P}_{\mathrm{c}},{P}_{\mathrm{r}} $
     输出:$ {\boldsymbol{w}}_{k}^{*},\forall k,{\boldsymbol{F}}^{*},{\boldsymbol{u}}^{*} $
     (1) 初始化$ {\boldsymbol{W}}_{j}^{\left(0\right)},{\boldsymbol{R}}_{\rm F}^{\left(0\right)},\boldsymbol{u} $;设置收敛精度$ \varepsilon \ge 0 $;优化变量
       $ {\boldsymbol{W}}_{k},{x}_{k},\forall k,{\boldsymbol{R}}_{\rm F} $;
     (2) 重复
     (3)   求解问题式(37),得到$ {\boldsymbol{W}}_{k},{x}_{k},\forall k,{\boldsymbol{R}}_{\rm F} $;
     (4)   对$ {\boldsymbol{W}}_{k} $进行EVD分解得到相应的$ {\boldsymbol{w}}_{k} $,对$ {\boldsymbol{R}}_{\rm F} $进行
         Cholesky分解得到相应的$ \boldsymbol{F} $;
     (5)   计算式(39)更新$ \boldsymbol{u} $;
     (6)   将$ {\boldsymbol{W}}_{k}={\boldsymbol{w}}_{k}{\boldsymbol{w}}_{k}^{\mathrm{H}} $用于迭代更新$ {\boldsymbol{W}}_{j}^{\left(i\right)} $,将$ {\boldsymbol{R}}_{\rm F}=\boldsymbol{F}{\boldsymbol{F}}^{{\mathrm{H}}} $
         用于迭代更新$ {\boldsymbol{R}}_{\rm F}^{\left(i\right)} $;
     (7)   计算本次迭代目标函数值式(28a)$ \frac{\displaystyle\sum\nolimits_{k=1}^{K}{x}_{k}}{\mathrm{ln}2} $;
     (8) 直到本次迭代的目标函数值式(28a)和上次迭代的目标函数值
       式(28a)的相差绝对值小于等于$ \varepsilon $;
     (9) 对$ {\boldsymbol{W}}_{k} $进行EVD得到相应的$ {\boldsymbol{w}}_{k}^{*} $,对$ {\boldsymbol{R}}_{\rm F} $进行Cholesky分解得
       到相应的$ {\boldsymbol{F}}^{*} $;
     (10) 计算式(39)得到$ {\boldsymbol{u}}^{*} $;
    下载: 导出CSV

    表  1  仿真参数

    参数 参数值
    地球半径$ {\mathrm{R}}_{\mathrm{e}} $ 6371 km
    LEO卫星高度$ {h}_{\mathrm{s}} $ 1000 km
    载波频率$ f $ 20 GHz
    信道带宽$ B $ 50 MHz
    噪声温度$ T $ 290 K
    玻尔兹曼常数$ {\mathrm{k}}_{\mathrm{B}} $ 1.38$ \text{×}{10}^{-23} $ J$ \cdot{\mathrm{K}}^{-1} $
    Bob个数 4
    天线增益$ {G}_{\mathrm{s}},{G}_{\mathrm{u}} $ 3 dB
    雷达感知性能下限$ {\varGamma }_{\mathrm{r}} $ 10 dB
    k个用户的俯仰角估计$ {\hat{\theta }}_{k} $[14] [0°,180°]
    卫星天线个数 25
    雷达天线个数 25
    卫星功率上限$ {P}_{\mathrm{t}} $[14] 47 dbm
    雷达功率上限$ {P}_{\mathrm{r}} $[15] 500 W
    隐蔽性要求$ \varepsilon $ 0.1
    k个用户的方位角估计$ {\hat{\varphi }}_{k} $[14] [0°,180°]
    路径损失指数$ \alpha $ 2.2
    k个用户的单位距离信道增益$ {\mathrm{\beta }}_{k} $[9] –30 dB
    卫星天线阵列X轴和Y轴天线数量 5,5
    下载: 导出CSV
  • [1] 易克初, 李怡, 孙晨华, 等. 卫星通信的近期发展与前景展望[J]. 通信学报, 2015, 36(6): 2015223. doi: 10.11959/j.issn.1000-436x.2015223.

    YI Kechu, LI Yi, SUN Chenhua, et al. Recent development and its prospect of satellite communications[J]. Journal on Communications, 2015, 36(6): 2015223. doi: 10.11959/j.issn.1000-436x.2015223.
    [2] CHEN Xinying, AN Jianping, XIONG Zehui, et al. Covert communications: A comprehensive survey[J]. IEEE Communications Surveys & Tutorials, 2023, 25(2): 1173–1198. doi: 10.1109/COMST.2023.3263921.
    [3] BASH B A, GOECKEL D, and TOWSLEY D. Limits of reliable communication with low probability of detection on AWGN channels[J]. IEEE Journal on Selected Areas in Communications, 2013, 31(9): 1921–1930. doi: 10.1109/JSAC.2013.130923.
    [4] YAN Shihao, HE Biao, ZHOU Xiangyun, et al. Delay-intolerant covert communications with either fixed or random transmit power[J]. IEEE Transactions on Information Forensics and Security, 2019, 14(1): 129–140. doi: 10.1109/TIFS.2018.2846257.
    [5] 周小波, 于辉, 彭旭, 等. 智能反射面辅助及人工噪声增强的无线隐蔽通信[J]. 电子与信息学报, 2022, 44(7): 2392–2399. doi: 10.11999/JEIT211618.

    ZHOU Xiaobo, YU Hui, PENG Xu, et al. Wireless covert communications based on intelligent reflecting surface aided and artificial noise enhanced[J]. Journal of Electronics & Information Technology, 2022, 44(7): 2392–2399. doi: 10.11999/JEIT211618.
    [6] HE Biao, YAN Shihao, ZHOU Xiangyun, et al. Covert wireless communication with a Poisson field of interferers[J]. IEEE Transactions on Wireless Communications, 2018, 17(9): 6005–6017. doi: 10.1109/TWC.2018.2854540.
    [7] ZHANG Lei, CHEN Zhao, JIANG Chunxiao, et al. Covert communication in ultra-dense LEO satellite systems with interference uncertainty[C]. The ICC 2024 - IEEE International Conference on Communications, Denver, USA, 2024: 1255–1260. doi: 10.1109/ICC51166.2024.10622920.
    [8] XIONG Wenhui, YAO Yinfeng, FU Xiaoyu, et al. Covert communication with cognitive jammer[J]. IEEE Wireless Communications Letters, 2020, 9(10): 1753–1757. doi: 10.1109/LWC.2020.3003472.
    [9] LIU Pengpeng, SI Jiangbo, LI Zan, et al. Covert communications for cognitive satellite terrestrial networks[C]. 2024 IEEE Wireless Communications and Networking Conference, Dubai, United Arab Emirates, 2024: 1–6. doi: 10.1109/WCNC57260.2024.10570773.
    [10] LIU An, HUANG Zhe, LI Min, et al. A survey on fundamental limits of integrated sensing and communication[J]. IEEE Communications Surveys & Tutorials, 2022, 24(2): 994–1034. doi: 10.1109/COMST.2022.3149272.
    [11] LU Shihang, LIU Fan, LI Yunxin, et al. Integrated sensing and communications: Recent advances and ten open challenges[J]. IEEE Internet of Things Journal, 2024, 11(11): 19094–19120. doi: 10.1109/JIOT.2024.3361173.
    [12] LIU Rang, LI Ming, LIU Yang, et al. Joint transmit waveform and passive beamforming design for RIS-aided DFRC systems[J]. IEEE Journal of Selected Topics in Signal Processing, 2022, 16(5): 995–1010. doi: 10.1109/JSTSP.2022.3172788.
    [13] 朱政宇, 杨晨一, 李铮, 等. 智能反射面辅助通感一体化系统安全资源分配算法[J]. 电子与信息学报, 2025, 47(1): 66–74. doi: 10.11999/JEIT240083.

    ZHU Zhengyu, YANG Chenyi, LI Zheng, et al. Resource allocation algorithm for intelligent reflecting surface-assisted secure integrated sensing and communications system[J]. Journal of Electronics & Information Technology, 2025, 47(1): 66–74. doi: 10.11999/JEIT240083.
    [14] ZHANG Xue, WANG Ruibo, SHANG Bodong, et al. Joint robust secure beamforming designs for ISAC-enabled LEO satellite systems[C]. 2024 IEEE International Conference on Communications, Denver, USA, 2024: 1182–1188. doi: 10.1109/ICC51166.2024.10622473.
    [15] CHU Jinjin, LIU Rang, LI Ming, et al. Joint secure transmit beamforming designs for integrated sensing and communication systems[J]. IEEE Transactions on Vehicular Technology, 2023, 72(4): 4778–4791. doi: 10.1109/TVT.2022.3225952.
    [16] HU Jinsong, LIN Qingzhuan, YAN Shihao, et al. Covert transmission via integrated sensing and communication systems[J]. IEEE Transactions on Vehicular Technology, 2024, 73(3): 4441–4446. doi: 10.1109/TVT.2023.3326455.
    [17] HU Jinsong, LI Hongwei, CHEN Youjia, et al. Covert communication in cognitive radio networks with Poisson distributed jammers[J]. IEEE Transactions on Wireless Communications, 2024, 23(10): 13095–13109. doi: 10.1109/TWC.2024.3398651.
    [18] ZHOU Xiaobo, YAN Shihao, HU Jinsong, et al. Joint optimization of a UAV's trajectory and transmit power for covert communications[J]. IEEE Transactions on Signal Processing, 2019, 67(16): 4276–4290. doi: 10.1109/TSP.2019.2928949.
    [19] SHU Feng, XU Tingzhen, HU Jinsong, et al. Delay-constrained covert communications with a full-duplex receiver[J]. IEEE Wireless Communications Letters, 2019, 8(3): 813–816. doi: 10.1109/LWC.2019.2894617.
    [20] YAN Shihao, ZHOU Xiangyun, HU Jinsong, et al. Low probability of detection communication: Opportunities and challenges[J]. IEEE Wireless Communications, 2019, 26(5): 19–25. doi: 10.1109/MWC.001.1900057.
    [21] LIU Pengpeng, LI Zan, SI Jiangbo, et al. Joint information-theoretic secrecy and covertness for UAV-assisted wireless transmission with finite blocklength[J]. IEEE Transactions on Vehicular Technology, 2023, 72(8): 10187–10199. doi: 10.1109/TVT.2023.3254882.
    [22] LUO Zhiquan, MA W K, SO A M C, et al. Semidefinite relaxation of quadratic optimization problems[J]. IEEE Signal Processing Magazine, 2010, 27(3): 20–34. doi: 10.1109/MSP.2010.936019.
    [23] WANG Kunyu, SO A M C, CHANG T H, et al. Outage constrained robust transmit optimization for multiuser MISO downlinks: TRACTABLE approximations by conic optimization[J]. IEEE Transactions on Signal Processing, 2014, 62(21): 5690–5705. doi: 10.1109/TSP.2014.2354312.
  • 加载中
图(5) / 表(2)
计量
  • 文章访问数:  136
  • HTML全文浏览量:  34
  • PDF下载量:  41
  • 被引次数: 0
出版历程
  • 收稿日期:  2025-03-27
  • 修回日期:  2025-05-09
  • 网络出版日期:  2025-05-22

目录

    /

    返回文章
    返回